首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the uniform regularity and vanishing viscosity limit for the incompressible chemotaxis‐Navier‐Stokes system with Navier boundary condition for velocity field and Neumann boundary condition for cell density and chemical concentration in a 3D bounded domain. It is shown that there exists a unique strong solution of the incompressible chemotaxis‐Navier‐Stokes system in a finite time interval, which is independent of the viscosity coefficient. Moreover, this solution is uniformly bounded in a conormal Sobolev space, which allows us to take the vanishing viscosity limit to obtain the incompressible chemotaxis‐Euler system.  相似文献   

2.
We consider the Navier–Stokes system with variable density and variable viscosity coupled to a transport equation for an order‐parameter c. Moreover, an extra stress depending on c and ?c, which describes surface tension like effects, is included in the Navier–Stokes system. Such a system arises, e.g. for certain models of granular flows and as a diffuse interface model for a two‐phase flow of viscous incompressible fluids. The so‐called density‐dependent Navier–Stokes system is also a special case of our system. We prove short‐time existence of strong solution in Lq‐Sobolev spaces with q>d. We consider the case of a bounded domain and an asymptotically flat layer with a combination of a Dirichlet boundary condition and a free surface boundary condition. The result is based on a maximal regularity result for the linearized system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, we consider a viscous compressible model of plasma and semiconductors, which is expressed as a compressible Navier‐Stokes‐Poisson equation. We prove that there exists a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces in bounded domain, provided that the ratio of the electron/ions mass is appropriately small. Moreover, the zero‐electron‐mass limit of the strong solutions is rigorously verified. The main idea in the proof is to split the original equation into 4 parts, a system of stationary incompressible Navier‐Stokes equations with large forces, a system of stationary compressible Navier‐Stokes equations with small forces, coupled with 2 Poisson equations. Based on the known results about linear incompressible Navier‐Stokes equation, linear compressible Navier‐Stokes, linear transport, and Poisson equations, we try to establish uniform in the ratio of the electron/ions mass a priori estimates. Further, using Schauder fixed point theorem, we can show the existence of a strong solution to the boundary value problem of the steady compressible Navier‐Stokes‐Poisson equation with large external forces. At the same time, from the uniform a priori estimates, we present the zero‐electron‐mass limit of the strong solutions, which converge to the solutions of the corresponding incompressible Navier‐Stokes‐Poisson equations.  相似文献   

4.
We prove that the renormalized solutions of the Boltzmann equation considered in a bounded domain with different types of (kinetic) boundary conditions converge to the Stokes‐Fourier system with different types of (fluid) boundary conditions when the main free path goes to zero. This extends the work of F. Golse and D. Levermore [9] to the case of a bounded domain. © 2003 Wiley Periodicals, Inc.  相似文献   

5.
We establish a Stokes‐Fourier limit for the Boltzmann equation considered over any periodic spatial domain of dimension two or more. Appropriately scaled families of DiPerna‐Lions renormalized solutions are shown to have fluctuations that globally in time converge weakly to a unique limit governed by a solution of Stokes‐Fourier motion and heat equations provided that the fluid moments of their initial fluctuations converge to appropriate L2 initial data of the Stokes‐Fourier equations. Both the motion and heat equations are both recovered in the limit by controlling the fluxes and the local conservation defects of the DiPerna‐Lions solutions with dissipation rate estimates. The scaling of the fluctuations with respect to Knudsen number is essentially optimal. The assumptions on the collision kernel are little more than those required for the DiPerna‐Lions theory and that the viscosity and heat conduction are finite. For the acoustic limit, these techniques also remove restrictions to bounded collision kernels and improve the scaling of the fluctuations. Both weak limits become strong when the initial fluctuations converge entropically to appropriate L2 initial data. © 2001 John Wiley & Sons, Inc.  相似文献   

6.
The paper deals with theoretical analysis of non‐stationary incompressible flow through a cascade of profiles. The initial‐boundary value problem for the Navier–Stokes system is formulated in a domain representing the exterior to an infinite row of profiles, periodically spaced in one direction. Then the problem is reformulated in a bounded domain of the form of one space period and completed by the Dirichlet boundary condition on the inlet and the profile, a suitable natural boundary condition on the outlet and periodic boundary conditions on artificial cuts. We present a weak formulation and prove the existence of a weak solution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
We study in this paper the movement of a rigid solid inside an incompressible Navier‐Stokes flow within a bounded domain. We consider the case where slip is allowed at the fluid/solid interface through a Navier condition. Taking into account slip at the interface is very natural within this model, as classical no‐slip conditions lead to unrealistic collisional behavior between the solid and the domain boundary. We prove for this model existence of weak solutions of Leray type, up to collision, in three dimensions. The key point is that, due to the slip condition, the velocity field is discontinuous across the fluid/solid interface. This prevents obtaining global H1 bounds on the velocity, which makes many aspects of the theory of weak solutions for Dirichlet conditions inappropriate. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength ?. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit ε=0 is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in Basson and Gérard-Varet (2008) [6] and Gerard-Varet and Masmoudi (2010) [13], in which the special case of a Dirichlet condition at the rough boundary was examined.  相似文献   

9.
This article deals with the shape reconstruction of a bounded domain with a viscous incompressible fluid driven by the time‐dependent Navier‐Stokes equations. For the approximate solution of the ill‐posed and nonlinear problem we propose a regularized Newton method. A theoretical foundation for the Newton method is given by establishing the differentiability of the initial boundary value problem with respect to the interior boundary curve in the sense of the domain derivative. Numerical examples indicate the feasibility of our method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

10.
The zero‐viscosity limit for an initial boundary value problem of the linearized Navier‐Stokes equations of a compressible viscous fluid in the half‐plane is studied. By means of the asymptotic analysis with multiple scales, we first construct an approximate solution of the linearized problem of the Navier‐Stokes equations as the combination of inner and boundary expansions. Next, by carefully using the technique on energy methods, we show the pointwise estimates of the error term of the approximate solution, which readily yield the uniform stability result for the linearized Navier‐Stokes solution in the zero‐viscosity limit. © 1999 John Wiley & Sons, Inc.  相似文献   

11.
We consider a mixed boundary problem for the Navier–Stokes equations in a bounded Lipschitz two-dimensional domain: we assign a Dirichlet condition on the curve portion of the boundary and a slip zero condition on its straight portion. We prove that the problem has a solution provided the boundary datum and the body force belong to a Lebesgue’s space and to the Hardy space respectively.  相似文献   

12.
The present note extends to smooth enough bounded domains recent results about barotropic compressible Navier–Stokes systems with density dependent viscosity coefficients. We show how to get the existence of global weak solutions for both classical Dirichlet and Navier boundary conditions on the velocity, under appropriate constraints on the initial density profile and domain curvature. An additional turbulent drag term in the momentum equation is used to handle the construction of approximate solutions.  相似文献   

13.
In this article we show that the set of Dirichlet regular boundary points of a bounded domain of dimension up to 4, definable in an arbitrary o‐minimal structure on the field ?, is definable in the same structure. Moreover we give estimates for the dimension of the set of non‐regular boundary points, depending on whether the structure is polynomially bounded or not. This paper extends the results from the author's Ph.D. thesis [6, 7] where the problem was solved for polynomially bounded o‐minimal structures expanding the real field. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We establish the wellposedness of the time‐independent Navier–Stokes equations with threshold slip boundary conditions in bounded domains. The boundary condition is a generalization of Navier's slip condition and a restricted Coulomb‐type friction condition: for wall slip to occur the magnitude of the tangential traction must exceed a prescribed threshold, independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. We formulate the boundary‐value problem as a variational inequality and then use the Galerkin method and fixed point arguments to prove the existence of a weak solution under suitable regularity assumptions and restrictions on the size of the data. We also prove the uniqueness of the solution and its continuous dependence on the data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the Navier‐Stokes equations for viscous incompressible flows in the half‐plane under the no‐slip boundary condition. By using the vorticity formulation we prove the local‐in‐time convergence of the Navier‐Stokes flows to the Euler flows outside a boundary layer and to the Prandtl flows in the boundary layer in the inviscid limit when the initial vorticity is located away from the boundary. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
This paper studies the vanishing viscosity limit for the 2D Cahn–Hilliard–Navier–Stokes system in a bounded domain with a slip boundary condition. The result is proved globally in time.  相似文献   

17.
Energy bounds are derived for Dirichlet type boundary value problems for the Navier–Stokes and Stokes equations when a combination of the solution values initially and at a later time is prescribed. The bounds are obtained by means of a differential inequality and imply uniqueness and continuous data dependence of the solutions for a range of values of the parameter in the non‐standard auxiliary condition. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
We establish a local well‐posedness and a blow‐up criterion of strong solutions for the compressible Navier‐Stokes‐Fourier‐P1 approximate model arising in radiation hydrodynamics. For the local well‐posedness result, we do not need the assumption on the positivity of the initial density and it may vanish in an open subset of the domain.  相似文献   

19.
An estimate on the Hausdorff dimension of the global attractor for damped nonlinear wave equations, in two cases of nonlinear damping and linear damping, with Dirichlet boundary condition is obtained. The gained Hausdorff dimension is bounded and is independent of the concrete form of nonlinear damping term. In the case of linear damping, the gained Hausdorff dimension remains small for large damping, which conforms to the physical intuition.

  相似文献   


20.
We consider the Navier–Stokes equations for a compressible, viscous fluid with heat–conduction in a bounded domain of IR2 or IR3. Under the assumption that the external force field and the external heat supply are small we prove the existence and local uniqueness of a stationary solution satisfying a slip boundary condition. For the temperature we assume a Dirichlet or an oblique boundary condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号