首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic–elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capillarity limit, we recover solutions of a diffusive–dispersive regularization, which is the standard regularization used to approximate undercompressive waves. In fact the new parabolic–elliptic system can be understood as a low-order approximation of the third-order diffusive–dispersive regularization, thus sharing some similarities with the relaxation approximations. A study of the traveling waves for the parabolic–elliptic system completes the paper.  相似文献   

2.
In this article, we explore some of the main mathematical problems connected to multidimensional fractional conservation laws driven by Lévy processes. Making use of an adapted entropy formulation, a result of existence and uniqueness of a solution is established. Moreover, using bounded variation (BV) estimates for vanishing viscosity approximations, we derive an explicit continuous dependence estimate on the nonlinearities of the entropy solutions under the assumption that the Lévy noise depends only on the solution. This result is used to show the error estimate for the stochastic vanishing viscosity method. Furthermore, we establish a result on vanishing non-local regularization of scalar stochastic conservation laws.  相似文献   

3.
We prove regularity estimates for entropy solutions to scalar conservation laws with a force. Based on the kinetic form of a scalar conservation law, a new decomposition of entropy solutions is introduced, by means of a decomposition in the velocity variable, adapted to the non-degeneracy properties of the flux function. This allows a finer control of the degeneracy behavior of the flux. In addition, this decomposition allows to make use of the fact that the entropy dissipation measure has locally finite singular moments. Based on these observations, improved regularity estimates for entropy solutions to (forced) scalar conservation laws are obtained.  相似文献   

4.
This paper deals with a new proof of the existence of weak solutions to scalar conservation laws. Our approach relies on the use of a particular finite difference scheme for time discretization which introduces a viscous term. The approximate solutions can be computed explicitly by solving a set of linear ordinary differential problems. We prove that they converge towards a weak solution which is, in a certain sense, unique and stable.  相似文献   

5.
We study a new nonlocal approach to the mathematical modelling of the chemotaxis problem, which describes the random motion of a certain population due to a substance concentration. Considering the initial–boundary value problem for the fractional hyperbolic Keller–Segel model, we prove the solvability of the problem. The solvability result relies mostly on fractional calculus and kinetic formulation of scalar conservation laws.  相似文献   

6.
In the present article, we study the temperature effects on two‐phase immiscible incompressible flow through a porous medium. The mathematical model is given by a coupled system of 2‐phase flow equations and an energy balance equation. The model consists of the usual equations derived from the mass conservation of both fluids along with the Darcy‐Muskat and the capillary pressure laws. The problem is written in terms of the phase formulation; ie, the saturation of one phase, the pressure of the second phase, and the temperature are primary unknowns. The major difficulties related to this model are in the nonlinear degenerate structure of the equations, as well as in the coupling in the system. Under some realistic assumptions on the data, we show the existence of weak solutions with the help of an appropriate regularization and a time discretization. We use suitable test functions to obtain a priori estimates. We prove a new compactness result to pass to the limit in nonlinear terms.  相似文献   

7.
In this paper we give a simple proof of well-posedness of multidimensional scalar conservations laws with a strong boundary condition. The proof is based on a result of strong trace for solutions of scalar conservation laws and kinetic formulation.  相似文献   

8.
This article examines the utilization of a spatial averaging technique to the nonlinear terms of the partial differential equations as an inviscid shock-regularization of hyperbolic conservation laws. A central motivation is to promote the idea of applying filtering techniques such as the observable divergence method, rather than viscous regularization, as an alternative to the simulation of shocks and turbulence in inviscid flows while, on the other hand, generalizing and unifying previous mathematical and numerical analysis of the method applied to the one-dimensional Burgers’ and Euler equations. This article primarily concerns the mathematical analysis of the technique and examines two fundamental issues. The first is on the global existence and uniqueness of classical solutions for the regularization under the more general setting of quasilinear, symmetric hyperbolic systems in higher dimensions. The second issue examines one-dimensional scalar conservation laws and shows that the inviscid regularization method captures the unique entropy or physically relevant solution of the original, non-averaged problem as filtering vanishes.  相似文献   

9.
10.
A general global existence result for one-dimensional pressureless Euler/Euler-Poisson systems with or without viscosity is obtained by employing the “sticky particles” model. We first construct entropy solutions for some appropriate scalar conservation laws, then we show that these solutions encode all the information necessary to obtain solutions for the pressureless systems. Another novel contribution is the stability and uniqueness of solutions, which is obtained via a contraction principle in the Wasserstein metric.  相似文献   

11.
An Engquist-Osher type finite difference scheme is derived for dealing with scalar conservation laws having a flux that is spatially dependent through a possibly discontinuous coefficient. The new monotone difference scheme is based on introducing a new interface numerical flux function, which is called a generalized Engquist-Osher flux. By means of this scheme, the existence and uniqueness of weak solutions to the scalar conservation laws are obtained and the convergence theorem is established. Some numerical examples are presented and the corresponding numerical results are displayed to illustrate the efficiency of the methods.  相似文献   

12.
The approach based on the construction of some nonlinear functionals was proved to be robust in the study of the well-posedness theories of hyperbolic conservation laws, especially in one space dimensional case. In particular, a generalized entropy functional was constructed in [T.-P. Liu, T. Yang, A new entropy functional for scalar conservation laws, Comm. Pure Appl. Math. 52 (1999) 1427-1442] for the L1 stability of weak solutions. However, this generalized functional is so far only defined for scalar equations with convex flux function. In this paper, we introduce a new nonlinear functional which is motivated by the new Glimm functional introduced in [J.-L. Hua, Z.-H. Jiang, T. Yang, A new Glimm functional and convergence rate of Glimm scheme for general systems of hyperbolic conservation laws, preprint] for general scalar conservation laws. This functional improves the one given in [H.-X. Liu, T. Yang, A nonlinear functional for general scalar hyperbolic conservation laws, J. Differential Equations 235 (2) (2007) 658-667] and it can be viewed as a better attempt for the generalized entropy functional for general equations.  相似文献   

13.
We study the large time behavior of solutions of scalar conservation laws in one and two space dimensions with periodic initial data. Under a very weak nonlinearity condition, we prove that the solutions converge to constants as time goes to infinity. Even in one space dimension our results improve the earlier ones since we only require the fluxes to be nonlinear in a neighborhood of the mean value of the initial data. We then use these results to study the homogenization problem for scalar conservation laws with oscillatory initial data.  相似文献   

14.
We introduce for the system of pressureless gases a new notion of solution, which consist in interpreting the system as two nonlinearly coupled linear equations. We prove In this setting existence of solutions for the Cauchy Problem, as well as uniqueness under optimal conditions on initlaffata. The proofs rely on the detailed study of the relations between pressureless gases, tie dynamics of sticky particles and nonlinear scalar conservation laws with monotone initial data. We prove for the latter problem that monotonicit implies uniqueness. and a generalization of Oleinik's entropy condition  相似文献   

15.
Using an integral formula of Droniou and Imbert (2005) for the fractional Laplacian, we define an entropy formulation for fractal conservation laws with pure fractional diffusion of order λ ∈]0, 1]. This allows to show the existence and the uniqueness of a solution in the L framework. We also establish a result of controled speed of propagation that generalizes the finite propagation speed result of scalar conservation laws. We finally let the non-local term vanish to approximate solutions of scalar conservation laws, with optimal error estimates for BV initial conditions as Kuznecov (1976) for λ = 2 and Droniou (2003) for λ ∈]1, 2].  相似文献   

16.
We present a streamline diffusion shock capturing spacetime discontinuous Galerkin (DG) method to approximate nonlinear systems of conservation laws in several space dimensions. The degrees of freedom are in terms of the entropy variables and the numerical flux functions are the entropy stable finite volume fluxes. We show entropy stability of the (formally) arbitrarily high order accurate method for a general system of conservation laws. Furthermore, we prove that the approximate solutions converge to the entropy measure valued solutions for nonlinear systems of conservation laws. Convergence to entropy solutions for scalar conservation laws and for linear symmetrizable systems is also shown. Numerical experiments are presented to illustrate the robustness of the proposed schemes.  相似文献   

17.
We prove a uniqueness result for BV solutions of scalar conservation laws with discontinuous flux in several space dimensions. The proof is based on the notion of kinetic solution and on a careful analysis of the entropy dissipation along the discontinuities of the flux.  相似文献   

18.
The paper deals with the pathwise uniqueness of solutions to one-dimensional time homogeneous stochastic differential equations with a diffusion coefficient σ satisfying the local time condition and measurable drift term b. We show that if the functions σ and b satisfy a non-degeneracy condition and fundamental solution to considered equation is unique in law, then pathwise uniqueness of solutions holds. Our result is in some sense negative, more precisely we give an example of an equation with Holder continuous diffusion coefficient and nondegenerate drift for which a fundamental solution is not unique in law and pathwise uniqueness of solutions does not hold.  相似文献   

19.
We revisit the classical theory of multidimensional scalar conservation laws. We reformulate the notion of the classical Kruzkov entropy solutions and study some new properties as well as the well-posedness of the initial value problem with inhomogeneous fluxes and general initial data. We also consider Dirichlet boundary value problems. We put forward a new and transparent definition for solutions and give a simple proof for their well-posedness in domains with smooth boundaries. Finally, we introduce the notion of saturated solutions and show that it is well-posed.  相似文献   

20.
This paper presents a new numerical strategy for computing the nonclassical weak solutions of scalar conservation laws which fail to be genuinely nonlinear. We concentrate on the typical situation of concave–convex and convex–concave flux functions. In such situations the so‐called nonclassical shocks, violating the classical Oleinik entropy criterion and selected by a prescribed kinetic relation, naturally arise in the resolution of the Riemann problem. Enforcing the kinetic relation from a numerical point of view is known to be a crucial but challenging issue. By means of an algorithm made of two steps, namely an Equilibrium step and a Transport step, we show how to force the validity of the kinetic relation at the discrete level. The proposed strategy is based on the use of a numerical flux function and random numbers. We prove that the resulting scheme enjoys important consistency properties. Numerous numerical evidences illustrate the validity of our approach. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号