首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimized geometry and vibrational frequencies of 2-(2,3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitro-phenyl) acetonitrile (DOPNA) were obtained by ab initio DFT/B3LYP level with complete relaxation in the potential energy surface using 6-31G and 6-311G basis sets. The Fourier-transform infrared (FT-IR) spectrum of DOPNA has been recorded in the region 4000-400 cm(-1). The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The calculated frequencies are in comparable agreement with the experimental frequencies. The calculated energy span between the HOMO and the LUMO of DOPNA is 2.94 and 2.87eV by B3LYP/6-31G and B3LYP/6-311G, respectively.  相似文献   

2.
3.
The solid phase mid FTIR and FT Raman spectra of 2-naphthoic acid (NA) and 6-bromo-2-naphthoic acid (BNA) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The fundamental vibrational frequencies and intensities of the vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP method and 6-311+G** basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

4.
The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. In addition, the IR spectra in CCl(4) at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.  相似文献   

5.
The vibrational spectra of 2-methyl piperazine (2MPZ) have been computed using B3LYP methodology and 6-31G* and 6-31G** basis sets. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. A close agreement was achieved between the observed and calculated frequencies by employing normal coordinate calculations. The observed and simulated spectra were found to be well comparable.  相似文献   

6.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

7.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

8.
This work deals with the vibrational spectroscopy of 4-amino-2,6-dichloropyridine (ADCP) and 2-chloro-3,5-dinitropyridine (CDNP) by means of quantum chemical calculations. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) with the standard B3LYP/6-31G(*) and B3LYP/6-311+G(**) methods and basis set combinations, and was scaled using various scale factors which yields a good agreement between observed and calculated frequencies. The vibrational spectra were interpreted with the aid of normal coordinate analysis based on scaled density functional force field. The results of the calculations were applied to simulated infrared and Raman spectra of the title compounds, which showed excellent agreement with the observed spectra.  相似文献   

9.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

10.
The solid phase FTIR and FT-Raman spectra of 2-amino-4,6-dimethyl pyrimidine (ADMP) have been recorded in the regions 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The structure was investigated by utilizing density functional theory (DFT) calculations with the Becke 3-Lee-Yang-Parr (B3LYP) method employing the 6-31+G and 6-311++G basis sets. The optimized geometrical parameters obtained by B3LYP method show good agreement with experimental data. Complete vibrational assignments were made on the basis of normal coordinate analysis (NCA) for the molecule. The infrared and Raman spectra were also predicted from the calculated intensities. The observed and the calculated spectra were found to be in good agreement. The thermodynamic properties like entropies and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized structures.  相似文献   

11.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

12.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

13.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

14.
FT-IR and Raman spectra of 5-o-tolyl-2-pentene (OTP) have been experimentally reported in the region of 4000-10 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometric parameters, normal mode frequencies and corresponding vibrational assignments of cis and trans isomers of OTP (C12H16) have been theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31G(d) and 6-31++G(d,p) basis sets. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated. Comparison between the experimental and theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for predicting vibrational wavenumbers and trans isomer is supposed to be the most stable form of OTP molecule.  相似文献   

15.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

16.
The geometry, frequency and intensity of the vibrational bands of aluminum(III) Tris-acetylacetone Al(AA)3 and its 1,3,5-(13)C derivative were obtained by the Hartree-Fock (HF) and Density Functional Theory (DFT) with the B3LYP, B1LYP, and G96LYP functionals and using the 6-31G* basis set. The calculated frequencies are compared with the solid IR and Raman spectra. All of the measured IR and Raman bands were interpreted in terms of the calculated vibrational modes. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated bond lengths and bond angles are in good agreement with the experimental results. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes. Four bands in the 500-390 cm(-1) frequency range are assigned to the vibrations of metal-ligand bonds.  相似文献   

17.
The FT-IR spectrum of 2,6-di-tert-butyl-4-methylphenol [butylated hydroxy toluene] was recorded in the region 4000-400 cm(-1). The FT-Raman spectrum of butylated hydroxy toluene was also recorded in the region 3500-50 cm(-1). The molecular structure and vibrational frequencies of butylated hydroxy toluene (BHT) have been investigated with combined experimental and theoretical study. Two stable conformers of the title compound were obtained from the result of geometry optimizations of these possible conformers. The conformer 1 is (approximately 2.6 kcal/mol) more stable than conformer 2. Geometry optimizations and vibrational frequency calculations were performed by BLYP and B3LYP methods using 6-31G(d), 6-31G(d,p) and 6-31+G(d,p) as basis sets. The scaled frequencies were compared with experimental spectrum and on the basis of this comparison; assignments of fundamental vibrational modes were examined. Comparison of the experimental spectra with harmonic vibrational wavenumbers indicates that B3LYP/6-31G(d) results are more accurate. Predicted electronic absorption spectra of BHT from TD-DFT calculation have been analyzed and compared with the experimental UV-vis spectrum. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule.  相似文献   

18.
In this work, the experimental and theoretical spectra of 4-chloro-2-bromoacetophenone (4C2BAP) are studied. FT-IR and FT-Raman spectra of title molecule have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (B3LYP) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values are compared with the experimental FT-IR and FT-Raman spectra. The DFT (B3LYP/6-311G (d, p)) calculations are more reliable than the ab initio HF/6-311G (d, p) calculations for the vibrational study of 4C2BAP. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands of the carbonyl and acetyl groups due to the presence of halogens (Cl and Br) in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

19.
The vibrational spectra of 2,3-dihydroxy pyridine (DHP) and 2,4-dihyroxy-3-nitropyridine (DHNP) have been computed using B3LYP methodology and 6-31G** basis set. The solid phase FTIR and FT Raman spectra were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors.  相似文献   

20.
Infrared (4000-100 cm(-1)) spectra of aminomethyl-dimethyl-phosphine oxide and 15N-aminomethyl-dimethyl-phosphine oxide have been measured. Geometric parameters (bond distances and angles), net electronic charges and vibrational spectroscopic data of both compounds calculated at various levels of theory (B3LYP/6-31G* and Moeller-Plesset perturbational theory (MP2)/6-31G*) are reported. The theoretical spectral results are discussed mainly in terms of comparison with infrared (4000-100 cm(-1)) spectral data. Better coincidence was achieved with the frequencies calculated at the MP2/6-31G* level: the standard deviation is 16 cm(-1). The calculated isotopic frequency shifts, induced by the 15N labeling, are in good accordance with the measured ones. Complete vibrational assignment is made with the help of MP2 force field calculations. Data obtained here are used to reassign some of the vibrational frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号