首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the experimental and theoretical spectra of 4-chloro-2-bromoacetophenone (4C2BAP) are studied. FT-IR and FT-Raman spectra of title molecule have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (B3LYP) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values are compared with the experimental FT-IR and FT-Raman spectra. The DFT (B3LYP/6-311G (d, p)) calculations are more reliable than the ab initio HF/6-311G (d, p) calculations for the vibrational study of 4C2BAP. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands of the carbonyl and acetyl groups due to the presence of halogens (Cl and Br) in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

2.
FT-IR and FT-Raman spectra of p-fluoronitrobenzene (FNO(2)C(6)H(4)) have been recorded in the region 4000-100 cm(-1). In this work, the experimental and theoretical spectra of p-fluoronitrobenzene (p-FNBz) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and DFT (B3LYP and LSDA) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The computed values of frequencies are scaled to yield good coherence with observed values by using suitable factor. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The observed and calculated frequencies are found to be in very good agreement. The alteration of vibration bands due to the substitutions at the first and fourth position of the skeletal ring is also investigated from their characteristic region of linked spectrum. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, are performed by time dependent DFT (TD-DFT) approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures have been calculated in gas phase, revealing the correlations between standard heat capacities (C) standard entropies (S), standard enthalpy changes (H) and temperatures.  相似文献   

3.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

4.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

5.
In this work, the experimental and theoretical spectra of 3-bromoanisole (3-BA) are studied. FT-IR and FT-Raman spectra of title molecule in the liquid phase have been recorded in the region 4000-100 cm(-1). The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock and density functional method (LSDA and MPW1PW91) with the 6-31G (d, p) and 6-311G (d, p) basis sets. The vibrational frequencies are calculated and scaled values have been compared with the experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found in good agreement. The DFT-LSDA/6-311G (d, p) calculations have been found are more reliable than the ab initio HF/6-31G (d, p) calculations for the vibrational study of 3-BA. The optimized geometric parameters (bond lengths and bond angles) are compared with experimental values of the molecule. The alteration of vibrational bands due to the substitutions in the base molecule is also investigated from their characteristic region of linked spectrum.  相似文献   

6.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

7.
The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.  相似文献   

8.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   

9.
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-N,N'-dimethylamino pyridine (4NN'DMAP). The Fourier transform infrared and Fourier transform Raman spectra of 4NN'DMAP was recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods with 6-31G(d,p) and 6-311++G(d,p) basis sets. The harmonic vibrational frequencies, infrared intensities and Raman scattering activities of the title compound were performed at same level of theories. The scaled theoretical wavenumber showed very good agreement with the experimental values. The thermodynamic functions of the title compound was also performed at HF/6-31G(d,p) and B3LYP/6-311++G(d,p) level of theories. A detailed interpretation of the infrared and Raman spectra of 4NN'DMAP was reported. The theoretical spectrograms for FT-IR and FT-Raman spectra of the title molecule have been constructed.  相似文献   

10.
FT-IR and FT-Raman spectra of 1-cyclopropylpiperazine (1cppp) are experimentally examined in the range 4000-200 cm?1. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 1cppp C7H14N2 are theoretically examined by means of B3LYP hybrid density functional theory (DFT) with the 6–31++G(d,p) basis set. Based on the potential energy distribution (PED) reliable vibrational assignments are made and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 1cppp are predicted. Calculations are performed for four different conformations in two point groups of 1cppp in the gas phase. A comparison between the experimental and theoretical results indicates that the B3LYP method is able to provide satisfactory results for the prediction of vibrational frequencies, structural parameters, and assignments. Furthermore, the C s (equatorial-equatorial) point group is found as the most stable conformer of 1cppp.  相似文献   

11.
In this work, the vibrational spectral analysis was carried out by using FT-IR and FT-Raman spectroscopy in the range 400–4000 and 50–3500 cm?1 respectively, for the title molecule. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method using 6-311++G(d,p) basis set. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments of all the vibrational mode were performed on the basis of the total energy distributions (TED). 13C and 1H NMR chemical shifts results were given and are in agreement with the corresponding experimental values. The theoretically constructed FT-IR and FT-Raman spectra exactly coincides with experimental one.  相似文献   

12.
In this work, the vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 100-4000cm(-1) and 400-4000cm(-1) respectively, for 1-nitronaphthalene (C(10)H(7)NO(2)) molecule. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based density functional theory (DFT) and ab initio HF methods and different basis sets combination. The complete vibrational assignments of wavenumbers were made on the basis of total energy distribution (TED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-311++G(d,p) results show the best agreement with the experimental values over the other methods. The energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) complements with the experimental findings. Thermodynamic properties of the title compound at different temperatures have been calculated. Besides, frontier molecular orbitals (FMO), molecular electrostatic potential (MEP) were performed.  相似文献   

13.
The infrared, the Fourier transform infrared and Fourier transform Raman spectra of p-chlorobenzoic acid (p-CBA) has been recorded in the region 4000-600 cm(-1), 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of p-CBA were obtained by the ab initio HF and DFT (B3LYP) methods with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic-vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

14.
The FT-IR and FT-Raman spectra of 2,3-difluoro phenol (2,3-DFP) has been recorded in the region 4000-400 and 4000-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,3-DFP were obtained by the ab initio HF and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-311+G(d,p) basis set. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

15.
The FT-IR and FT-Raman spectra of 1-bromo-3-fluorobenzene (C6H4FBr) molecule have been recorded using Bruker IFS 66 V spectrometer in the range of 4000–100 cm−1. The molecular geometry and vibrational frequencies in the ground state are calculated using the DFT (B3LYP, B3PW91 and MPW91PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The isotropic DFT (B3LYP, B3PW91 and MPW1PW91) analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by B3LYP methods. The complete data of this molecule provide the information for future development of substituted benzene. The influence of bromine and fluorine atom on the geometry of benzene and its normal modes of vibrations has also been discussed. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, was performed by time dependent DFT (TD-DFT) approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated in gas phase, revealing the correlations between standard heat capacities (C) standard entropies (S), standard enthalpy changes (H) and temperatures.  相似文献   

16.
The FT-IR and FT-Raman vibrational spectra of 1,3-dichlorobenzene (1,3-DCB) have been recorded using Bruker IFS 66 V Spectrometer in the range 4000-100 cm(-1). A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree-Fock (HF) and DFT (B3LYP) methods with 6-31++G (d, p) and 6-311++G (d, p) basis sets. With the help of different scaling factors, the observed vibrational wave numbers in FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range. The inductive effect of Chlorine atoms in the benzene molecule has also been investigated.  相似文献   

17.
The experimental IR, Raman, and 1H NMR spectra of picolinic acid, as well as magnesium, calcium, strontium, and barium picolinates were registered, assigned and studied. Characteristic changes in the spectra of metal picolinates in comparison with the spectrum of ligand were observed, which lead to the conclusion that perturbation of the aromatic system of picolinates increases along with the series Mg-->Ca-->Sr-->Ba. Theoretical structures of beryllium and magnesium picolinates, as well as theoretical IR spectrum of magnesium picolinate were calculated in B3PW91/6-311++G(d, p) level. On the basis of calculated bond lengths in pyridine ring geometric, aromaticity indexes HOMA were calculated. The idea of these indexes is based on the fact that the essential factor in aromatic stabilization is the pi delocalization manifested in: planar geometry, equalization of the bond lengths and angles, and symmetry. The decidedly lower value of HOMA for magnesium picolinate (i.e. 0.545; 0.539) than that for beryllium picolinate (i.e. 0.998; 0.998) indicate higher aromatic properties of Be picolinate than of Mg picolinate. The comparison of theoretical and literature experimental structures of magnesium picolinate was done. The experimental structure contains two water molecules, so the calculations for hydrated magnesium picolinate were carried on, and the influence of coordinated water molecule on the structure of picolinates was discussed. The HOMAs for hydrated experimental and calculated Mg picolinate amount to 0.870; 0.743, and 0.900; 0.890, respectively, whereas for anhydrous structure, it is as described above, i.e. 0.545; 0.539. Thus, the calculations clearly showed that water molecules coordinated to the central atom weakens the effect of metal on the electronic system of ligand.  相似文献   

18.
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of 2-aminonicotinic acid (2-ANA) was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR (1H and 13C) spectra of 2-aminonicotinic acid and its alkali metal salts were recorded. Characteristic shifts and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons (1H NMR) and carbons (13C NMR) in the series of studied alkali metal 2-aminonicotinates (2-AN) were observed too.Optimized geometrical structures of the studied compounds were calculated by the B3LYP method using the 6-311++G** basis set. Aromaticity indices, atomic charges, dipole moments and energies were also calculated. The theoretical chemical shifts in 1H and 13C NMR spectra and theoretical wavenumbers and intensities of IR and Raman spectra were determined. The calculated parameters were compared to the experimental characteristics of the studied compounds.  相似文献   

19.
The optimized geometry and vibrational frequencies of P-N,N-dimethylaminobenzylidenemalononitrile (DBM) were obtained by ab initio HF and DFT/B3LYP levels with complete relaxation in the potential energy surface using 6-31++G(d,p) and 6-311++G(d,p) basis sets. The Fourier-transform infrared (FT-IR) spectrum of DBM has been recorded in the region 4000-400 cm(-1). The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FT-IR spectrum. The calculated frequencies are in good agreement with the experimental frequencies.  相似文献   

20.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号