首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
任军  贾孟文  袁常青 《中国物理 B》2009,18(12):5575-5582
The mass neutrino interference phases along the null trajectory and the geodesic line in Kerr space--time are studied on the plane θ=π/2. Because of the rotation object in Kerr space--time, a particle travelling along the radial geodesic must have a dragging effect produced by the angular momentum of the central object. We give the correction of the phase due to the rotation of the space--time. We find that the type-I interference phase along the geodesic remains the double of that along the null on the condition that the rotating quantity parameter a2 is preserved and the higher order terms are negligible (e.g. a4). In addition, we calculate the proper oscillation length in Kerr space--time. All of our results can return to those in Schwarzschild space--time as the rotating parameter a approaches zero.  相似文献   

2.
Along the geodesic we calculate the interference phase of the mass neutrinos propagating in the radial direction in Robertson--Walker space--time. Since our universe is expanding, the phase factor Ph is increasing under the condition of the same proper physical distance l. Different values of curvature parameter k in Robertson--Walker metric represent different cosmological models, correspondingly, we obtain the different interference phases.  相似文献   

3.
张树群  陈芝得 《中国物理 B》2008,17(4):1436-1442
Dephasing mechanism of quantum tunnelling in molecular magnets has been studied by means of the spin-coherentstate path integral in a mean field approximation. It is found that the fluctuating uncompensated transverse field from the dipolar-dipolar interaction between molecular magnets contributes a random phase to the quantum interference phase. The resulting transition rate is determined by the average tunnel splitting over the random phase. Such a dephasing process leads to the suppression of quenching due to the quantum phase interference, and to the steps due to odd resonances in hysteresis loop survived, which is in good agreement with experimental observations in molecular nanomagnets Fes and Mn12.  相似文献   

4.
Considering phase interference, we investigate coherent transport in a quantum dot by using a thermopower. In the single process of the electronic transport through the quantum dot, it is shown that the phase interference between the levels of a quantum dot is like the Aharonov-Bohm effect. The result indicates that the thermopower is very sensitive to phase interference. It is also found that the phase-difference change of the different levels of the quantum dot can determine the shape of the thermopower.  相似文献   

5.
张冰  孙秀冬  姜向前 《中国物理 B》2010,19(8):83201-083201
<正>We investigate the effect of initial phase difference between the two excited states of a V-type three-level atom on its steady state behaviour of spontaneous emission.A modified density of modes is introduced to calculate the spontaneous emission spectra in photonic crystal.Spectra in free space are also shown to compare with that in photonic crystal with different relative positions of the excited levels from upper band-edge frequency.It is found that the initial phase difference plays an important role in the quantum interference property between the two decay channels.For a zero initial phase,destructive property is presented in the spectra.With the increase of initial phase difference,quantum interference between the two decay channels from upper levels to ground level turns to be constructive.Furthermore, we give an interpretation for the property of these spectra.  相似文献   

6.
For studying the interference between two Bose-Einstein condensates we introduce the atomic coherentstate (ACS) in the Schwinger bosonic realization along with the phase operator to directly calculate the interference pattern with steady relative phase cos Ф. Eigenstates of the density operator of condensates are classified as ACS is also demonstrated. The entangled state representation is used in some calculations.  相似文献   

7.
钟诗阳  贺新奎  滕浩  叶蓬  汪礼锋  何鹏  魏志义 《中国物理 B》2016,25(2):23301-023301
High-order harmonic generation(HHG) driven by two non-collinear beams including a fundamental and its weak second harmonic is numerically studied. The interference of harmonics from adjacent electron quantum paths is found to be dependent on the relative delay of the driving pulse, and the dependences are different for different harmonic orders.This frequency dependence of the interference is attributed to the spatial frequency chirp in the HHG beam resulting from the harmonic dipole phase, which in turn provides a potential way to gain an insight into the generation of high-order harmonics. As an example, the intensity dependent dipole phase coefficient α is retrieved from the interference fringe.  相似文献   

8.
We present a novel homodyne frequency-shifting interference pattern locking system to enhance the exposure contrast of interference lithography and scanning beam interference lithography(SBIL). The novel interference pattern locking system employs a special homodyne redundant phase measurement interferometer(HRPMI) as the sensor and an acousto-opto modulator(AOM) as the actuator. The HRPMI offers the highly accurate value as well as the direction recognition of the interference pattern drift from four quadrature interference signals. The AOM provides a very fine resolution with a high speed for phase modulation. A compact and concise system with a short optical path can be achieved with this new scheme and a small power laser head in tens of microwatts is sufficient for exposure and phase locking, which results in a relatively low-cost system compared with the heterodyne system. More importantly, the accuracy of the system is at a high level as well as having robustness to environmental fluctuation. The experiment results show that the short-time(4 s) accuracy of the system is 0.0481 rad e3σT at present. Moreover, the phase of the interference pattern can also be set arbitrarily to any value with a high accuracy in a relatively large range, which indicates that the system can also be extended to the SBIL application.  相似文献   

9.
Using the measure of interference defined in this paper, we investigate the quantum phase transition of one-dimensional Ising chains. We find that thermal fluctuations affect the interference more strongly at the critical point. We also show that the derivative of the interference with respect to the coupling parameter, A, can be depressed by the thermal fluctuation. Finally, we find that this suppression is due to multi-particle excitations.  相似文献   

10.
We theoretically study the collective decay of two atoms trapped in a single mode cavity and we describe the evolution of the population of Dicke states. We show that the collective decay property is strongly dependent on the phase of atomic radiation and the speeding up of collective decay can only be observed in a bad cavity regime. For in-or out-phase case,this occurs due to the quantum interference enhancement, no matter which atom is excited initially. For π/2 phase, the speeding up of collective decay takes place if the first atom is excited at the beginning. However, it disappears due to the quantum interference cancellation if the second atom is excited. Compared with the in-phase and out-phase cases,we also show that the speeding up of collective decay can be significantly enhanced in strong coupling regime for π/2 phase, although one atom is decoupled to the cavity in this condition. The study presented here is helpful to understand the physical mechanism of collective decay in cavity quantum electrodynamics and it provides a useful method to control the collective decay phenomenon via quantum interference effect.  相似文献   

11.
The infinite derivative theory of gravity is a generalization of Einstein gravity with many interesting properties,but the black hole solutions in this theory are still not fully understood.In the paper,we concentrate on studying the charged black holes in such a theory.Adding the electromagnetic field part to the effective action,we show how the black hole solutions around the Reissner-Nordstrom metric can be solved perturbatively and iteratively.We further calculate the corresponding temperature,entropy and electrostatic potential of the black holes and verify the first law of thermodynamics.  相似文献   

12.
In this paper, we investigate the relativistic quantum dynamics of spin-0 massive charged particles in a Gödel-type space–time with electromagnetic interactions. We derive the radial wave equation of the Klein–Gordon equation with an internal magnetic flux field and Coulomb-type potential in the Som–Raychaudhuri space–time with cosmic string. We solve this equation and analyze the analog effect in relation to the Aharonov–Bohm effect for bound states.  相似文献   

13.
We investigate phase-plane analysis of general relativistic orbits in a gravitational field of the Reissner–Nordstr?m-type regular black hole spacetime. We employ phase-plane analysis to obtain different phase-plane diagrams of the test particle orbits by varying charge q and dimensionless parameter β, where β contains angular momentum of the test particle. We compute numerical values of radii for the innermost stable orbits and corresponding values of energy required to place the test particle in orbits. Later on, we employ similar analysis on an Ayón–Beato–García(ABG) regular black hole and a comparison regarding key results is also included.  相似文献   

14.
In this paper, we employ the extended generalized uncertainty principle with linear terms (LEGUP) to investigate the thermodynamics properties of the Schwarzschild and Reissner–Nordström (RN) black holes. Firstly, by constructing the theoretical framework of LEGUP, the minimal temperature of the Schwarzschild black hole and the modified mass–temperature function for the black hole are calculated. Furthermore, the heat capacity function for the Schwarzschild black hole is obtained. After that, we compare LEGUP black hole thermodynamics with EGUP black hole and with the usual forms. Besides, the modification of black hole entropy is discussed, which involves a heuristic analysis of particles absorbed by the black hole. Finally, we derive the LEGUP-corrected temperature, heat capacity and entropy functions of the RN black hole.  相似文献   

15.
In this paper,we discuss the P-v criticality and the heat engine efficiency in the Bardeen EinsteinGauss-Bonnet (EGB) AdS black hole space-time.From the P-v plane in the extended phase space,we find that the Bardeen EGB-AdS black hole conforms to Van der Waals (VdW) liquid-gas systems in the extended phase space,and P_cv_/T_c=0.369 of the Bardeen EGB-AdS black hole system is between 0.3333 of the Gauss-Bonnet AdS black hole system and 0.375 of the VdW gas system in the 5-dimensions.Then we construct a heat engine by taking the Bardeen EGB-AdS black hole as the working substance,and consider a rectangle heat cycle in the P-v plane.We find that two cases with different Bardeen parameter e and Gauss-Bonnet parameter a both have the same situation,i.e.as the entropy difference between small black hole and large black hole S2 increases,the heat engine efficiency will increase.Furthermore,as the Bardeen parameter e increases,the efficiency will decrease.However,for the Gauss-Bonnet parameter a,the result is contrary.By comparing with the well-know Carnot heat engine efficiency,we have found the efficiency ratioη/η_c versus entropy S_2 is bounded below l,so it is coincided with the thermodynamical second law.  相似文献   

16.
In the extended phase space, we investigate the rainbow gravity-corrected thermodynamic phenomena and phase structure of the Schwarzschild black hole surrounded by a spherical cavity. The results show that rainbow gravity has a very significant effect on the thermodynamic phenomena and phase structure of the black hole. It prevents the black hole from total evaporation and leads to a remnant with a limited temperature but no mass. Additionally, we restore the PV criticality and obtain the critical quantities of the canonical ensemble. When the temperature or pressure is smaller than the critical quantities, the system undergoes two Hawking-Page-like phase transitions and one first-order phase transition, which never occurs in the original case. Remarkably, our findings demonstrate that the thermodynamic behavior and phase transition of the rainbow SC black hole surrounded by a cavity in the extended phase space are analogous to those of the Reissner–Nordström anti-de Sitter black hole. Therefore, rainbow gravity activates the effect of electric charge and cutoff factor in the evolution of the black hole.  相似文献   

17.
韩永昌  胡文辉  于杰  丛书林 《中国物理 B》2009,18(11):4834-4839
The interference between two dissociating wave packets of the I2 molecule driven by femtosecond laser pulses is theoretically studied by using the time-dependent quantum wave packet method.Both the internuclear distanceand velocity-dependent density functions are calculated and discussed.It is demonstrated that the interference pattern is determined by the phase difference and the delay time between two pump pulses.With two identical pulses with a delay time of 305 fs and a FWHM of 20 fs,more interference fringes can be observed,while with two pump pulses with a delay time of 80 fs and a FWHM of 20 fs,only a few interference fringes can be observed.  相似文献   

18.
The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe light beams is theoretically investigated. In a fixed geometrical configuration, the effect of quantum interference induced by spontaneous emission on the phase control of the GH shifts is analyzed in this paper. It is found that in a four-level N-type atomic system as an intracavity medium, the GH shifts of the reflected and transmitted probe light beam are completely phase dependent.  相似文献   

19.
The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.  相似文献   

20.
In order to investigate the quantum phase transitions and the time-of-flight absorption pictures analytically in a systematic way for ultracold Bose gases in bipartite optical lattices, we present a generalized Green’s function method. Utilizing this method, we study the quantum phase transitions of ultracold Bose gases in two types of bipartite optical lattices, i.e., a hexagonal lattice with normal Bose–Hubbard interaction and a d-dimensional hypercubic optical lattice with extended Bose–Hubbard interaction. Furthermore, the time-of-flight absorption pictures of ultracold Bose gases in these two types of lattices are also calculated analytically. In hexagonal lattice, the time-of-flight interference patterns of ultracold Bose gases obtained by our analytical method are in good qualitative agreement with the experimental results of Soltan-Panahi, et al. [Nat. Phys. 7, 434 (2011)]. In square optical lattice, the emergence of peaks at \(\left( { \pm \frac{\pi }{a}, \pm \frac{\pi }{a}} \right)\) in the time-of-flight absorption pictures, which is believed to be a sort of evidence of the existence of a supersolid phase, is clearly seen when the system enters the compressible phase from charge-density-wave phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号