首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of electrostatic interactions on the rejection of organic solutes with nanofiltration membranes were investigated. For two different membranes, the rejection of selected organic acids, positively and negatively charged pharmaceuticals and neutral pharmaceuticals was investigated at different feed water chemistries (different ionic strengths and pH conditions, with and without the presence of NOM and divalent cations). It was concluded that for negatively charged membranes, electrostatic repulsion leads to an increase of the rejection of negatively charged solutes and electrostatic attraction leads to a decrease of the rejection of positively charged solutes, compared to neutral solutes. Neutral and positively charged solutes engage in hydrophobic interactions with negatively charged membranes, whereas negatively charged solutes do not engage in hydrophobic interactions since they cannot approach the membrane surface. This provides proof for the theory of an increased concentration of positively charged organic solutes and a decreased concentration of negatively charged organic solutes at the membrane surface compared to the bulk fluid. This concept may be denoted as “charge concentration polarisation”. The concept was further used as a modelling tool to predict the effects of electrostatic interactions on the rejection of trace organic solutes.  相似文献   

2.
This report is concerned with the phenomenon of the membrane toxicity of pentachlorophenol (PCP)—a popular herbicide and wood preservative, and now one of the most widespread pollutants. We compare experimental data on membrane-PCP interactions from multiple studies. These data include membrane electrical conductivity, PCP toxicity, microelectrophoresis, and spectrophotometry. The membrane toxicity of PCP is associated with the PCP-induced hydrogen ion permeability of the lipid matrix of biomembranes. The onset of the toxic effect corresponds to the loss of membrane electrical resistance and the onset of measurable PCP adsorption. We show that electrophoresis of lipid vesicles can be effectively used to study PCP adsorption and that the PCP-membrane interaction can be described in terms of the Langmuir-Stern-Grahame model. We report how the solvatochromic shifts of the long wavelength UV absorption band of ionized PCP can be used to characterize the polarity of the PCP adsorption site on membranes. The dielectric constant of the site in phosphatidylcholine (PC) and in negatively charged phosphatidylglycerol (PG) membranes was found to be 8 and 20. The pKa of the dissociation of membrane-bound PCP is different from that in water (4.74). The largest pKa (6.7) was observed for PCP bound to negatively charged membranes. It was shown that when the membrane surface potential was taken into account, the intrinsic pKas for the PC and PG membranes are approximately the same (5.1-5.6). This work illustrates the complementarity of studies done on lipid bilayer membranes and biological membranes.  相似文献   

3.
Selectively targeting the membrane‐perturbing potential of peptides towards a distinct cellular phenotype allows one to target distinct populations of cells. We report the de novo design of a new class of peptide whose ability to perturb cellular membranes is coupled to an enzyme‐mediated shift in the folding potential of the peptide into its bioactive conformation. Cells rich in negatively charged surface components that also highly express alkaline phosphatase, for example many cancers, are susceptible to the action of the peptide. The unfolded, inactive peptide is dephosphorylated, shifting its conformational bias towards cell‐surface‐induced folding to form a facially amphiphilic membrane‐active conformer. The fate of the peptide can be further tuned by peptide concentration to affect either lytic or cell‐penetrating properties, which are useful for selective drug delivery. This is a new design strategy to afford peptides that are selective in their membrane‐perturbing activity.  相似文献   

4.
Four nanofiltration membranes, two negatively and two positively charged, were fabricated by interfacial polymerization. Three different amines, ethylenediamine (EDA), diethylenetriamine (DETA), and hyperbranched polyethyleneimine (PEI) were selected to react with two acyl chlorides, trimesoyl chloride (TMC) and terephthaloyl chloride (TPC). The two membranes containing hyperbranched PEI, PEI/TPC and PEI/TMC, are positively charged at the operational pH. But the other two membranes, EDA/TMC and DETA/TMC, are negatively charged. It is found that the two PEI membranes own special rejection characters during nanofiltration. The PEI/TPC membrane has a similar pore size to the EDA/TMC membrane but owns simultaneously the higher salt rejection and permeation flux. The PEI/TMC has a pore size as large as 1.5 nm and still has a higher NaCl rejection than the EDA/TMC membrane of which the pore size as small as 0.43 nm. We consider that the special rejection characters are derived from the special structure of PEI. The hyperbranched structure allows some of the charged amine groups drifting inside the pores and interacting with the ions in the pathway. The drifting amines increase salt rejection but have little effect on water permeation. It implies that a high flux and high rejection membrane for desalting can be obtained by attaching freely rotating charged groups.  相似文献   

5.
Nanofiltration (NF) membrane processes are attractive to remove multivalent ions. As ion retention in NF membranes is determined by both size and charge exclusion, negatively charged membranes are required to reject negatively charged ions. Layer-by-layer assembly of alternating polycation (PC) and polyanion layers on top of a support is a versatile method to produce membranes. Especially the polyelectrolyte (PE) couple polydiallyldimethylammoniumchloride and poly(sodium-4-styrenesulfonate) (PDADMAC/PSS) is extensively investigated. This PE couple cannot form highly negatively charged membrane surfaces, due to interdiffusion and charge overcompensation of PDADMAC into the PSS layers, which limits the operational window to tailor membrane properties. We propose the use of asymmetric layer formation and show how combining two charge densities of one PC can produce negatively charged NF membranes. Starting from hollow fiber ultrafiltration supports coated with base layers of PDADMAC/PSS, they are coated with PDADMAC/PSS or poly(acrylamide-co-diallyldimethylammoniumchloride), P(AM-co-DADMAC)/PSS layers. P(AM-co-DADMAC) has a charge density of only 32% compared to 100% for PDADMAC. The particular novel membranes coated with P(AM-co-DADMAC) have a highly negatively charged surface and high permeabilities (7–19 L/[m2hbar]), with high retentions for Na2SO4 of up to 95%. These values position the developed membranes in the top range compared to commercial and other layer-by-layer membranes.  相似文献   

6.
Defensins are small basic amphiphilic peptides (up to 5 kDa) that have been shown to be important effector molecules of the innate immune system of animals, plants and fungi. In addition to immune modulatory functions, they have potent direct antimicrobial activity against a broad spectrum of bacteria, fungi and/or viruses, which makes them promising lead compounds for the development of next-generation antiinfectives. The mode of antibiotic action of defensins was long thought to result from electrostatic interaction between the positively charged defensins and negatively charged microbial membranes, followed by unspecific membrane permeabilization or pore-formation. Microbial membranes are more negatively charged than human membranes, which may explain to some extent the specificity of defensin action against microbes and associated low toxicity for the host. However, research during the past decade has demonstrated that defensin activities can be much more targeted and that microbe-specific lipid receptors are involved in the killing activity of various defensins. In this respect, human, fungal and invertebrate defensins have been shown to bind to and sequester the bacterial cell wall building block lipid II, thereby specifically inhibiting cell wall biosynthesis. Moreover, plant and insect defensins were found to interact with fungal sphingolipid receptors, resulting in fungal cell death. This review summarizes the current knowledge on the mode of action and structure of defensins from different kingdoms, with specific emphasis on their interaction with microbial lipid receptors.  相似文献   

7.
In this study, we examined the dielectric properties of an intermediate layer in a bipolar membrane, which is composed of a negatively charged layer and a positively charged layer joined in series. As a result of the time-dependent impedance measurements of charged membranes, the negative increment in electric conductivity and the positive increment in electric capacity were observed only in the case of a bipolar membrane under the application of reverse-biased voltages, which were quite different from the behavior of both monopolar membranes and of a bipolar membrane under forward-biased voltages. Further, the observed shifts showed a nearly constant value against the reverse-biased voltage. It is concluded that these characteristics coincide with the process of ion exclusion in the intermediate layer and are attributed to the water splitting mechanism.  相似文献   

8.
Lipids are very diverse in both their respective structures and functions; and cells exquisitely control membrane composition. One intriguing issue is the specific role of lipids in modulating the physical properties of membranes. Cardiolipin (CL) is a unique four-tailed, doubly negatively charged lipid found predominately within the inner mitochondrial membrane, and is thought to be influential in determining the inner mitochondrial membrane potential and permeability. To determine the role of cardiolipin in modulating the charge properties of membranes, this study investigated the electrostatic interactions between mixed cardiolipin and phosphatidylcholine bilayers as a function of cardiolipin concentration. For physiologically relevant concentrations of cardiolipin, the surface charge density of the membrane was found to increase linearly with increasing concentration of cardiolipin. However, only a fraction of the cardiolipin molecules predicted to carry a charge from pK-values were ionized. Clearly environmental factors, beyond that of pH, play a role in determining the charge of bilayers containing cardiolipin.  相似文献   

9.
To improve design processes in the field of nanomedicine, in vitro characterization of nanoparticles with systematically varied properties is of great importance. In this study, surface sensitive analytical techniques were used to evaluate the responsiveness of nano-sized drug-loaded polyelectrolyte complexes when adsorbed to model lipid membranes. Two bioreducible poly(amidoamine)s (PAAs) containing multiple disulfide linkages in the polymer backbone (SS-PAAs) were synthesized and used to form three types of nanocomplexes by self-assembly with human insulin, used as a negatively charged model protein at neutral pH. The resulting nanoparticles collapsed on top of negatively charged model membranes upon adsorption, without disrupting the membrane integrity. These structural rearrangements may occur at a cell surface which would prevent uptake of intact nanoparticles. By the addition of glutathione, the disulfide linkages in the polymer backbone of the SS-PAAs were reduced, resulting in fragmentation of the polymer and dissociation of the adsorbed nanoparticles from the membrane. A decrease in ambient pH also resulted in destabilization of the nanoparticles and desorption from the membrane. These mimics of intracellular environments suggest dissociation of the drug formulation, a process that releases the protein drug load, when the nanocomplexes reaches the interior of a cell.  相似文献   

10.
11.
Passive transport across cell membranes is the major route for the permeation of xenobiotics through tight endothelia such as the blood–brain barrier. The rate of passive permeation through lipid bilayers for a given drug is therefore a critical step in the prediction of its pharmacodynamics. We describe a detailed study on the kinetics and thermodynamics for the interaction of chlorpromazine (CPZ), an antipsychotic drug used in the treatment of schizophrenia, with neutral and negatively charged lipid bilayers. Isothermal titration calorimetry was used to study the partition and translocation of CPZ in lipid membranes composed of pure POPC, POPC:POPS (9:1), and POPC:Chol:POPS (6:3:1). The membrane charge due to the presence of POPS as well as the additional charge resulting from the introduction of CPZ in the membrane were taken into account, allowing the calculation of the intrinsic partition coefficients (K(P)) and the enthalpy change (ΔH) associated with the process. The enthalpy change upon partition to all lipid bilayers studied is negative, but a significant entropy contribution was also observed for partition to the neutral membrane. Because of the positive charge of CPZ, the presence of negatively charged lipids in the bilayer increases both the observed amount of CPZ that partitions to the membrane (KP(obs)) and the magnitude of ΔH. However, when the electrostatic effects are discounted, the intrinsic partition coefficient was smaller, indicating that the hydrophobic contribution was less significant for the negatively charged membrane. The presence of cholesterol strongly decreases the affinity of CPZ for the bilayer in terms of both the amount of CPZ that associates with the membrane and the interaction enthalpy. A quantitative characterization of the rate of CPZ translocation through membranes composed of pure POPC and POPC:POPS (9:1) was also performed using an innovative methodology developed in this work based on the kinetics of the heat evolved due to the interaction of CPZ with the membranes.  相似文献   

12.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

13.
We have studied theoretically the partition equilibrium of a cationic drug between an electrolyte solution and a membrane with pH-dependent fixed charges using an extended Donnan formalism. The aqueous solution within the fixed charge membrane is assumed to be in equilibrium with an external aqueous solution containing six ionic species: the cationic drug (DH(+)), the salt cations (Na(+) and Ca(2+)), the salt anion (Cl(-)), and the hydrogen and hydroxide ions. In addition to these mobile species, the membrane solution may also contain four fixed species attached to the membrane chains: strongly acid sulfonic groups (SO(3)(-)), weakly acid carboxylic groups in dissociated (COO(-)) and neutral (COOH) forms, and positively charged groups (COO...Ca(+)) resulting from Ca(2+) binding to dissociated weakly acid groups. The ionization state of the weak electrolyte groups attached to the membrane chains is analyzed as a function of the local pH, salt concentration, and drug concentration in the membrane solution, and particular attention is paid to the effects of the Ca(2+) binding to the negatively charged membrane fixed groups. The lipophilicity of the drug is simulated by the chemical partition coefficient between the membrane and external solutions giving the tendency of the drug to enter the membrane solution due to hydrophobic interactions. Comparison of the theoretical results with available experimental data allows us to explain qualitatively the effects that the pH, salt concentration, drug concentration, membrane fixed charge concentration, and Ca(2+) binding exert on the ionic drug equilibrium. The role of the interfacial (Donnan) electric potential difference between the membrane and the external solutions on this ionic drug equilibrium is emphasized throughout the paper.  相似文献   

14.
A charge mosaic (CM) membrane has high permselectivity for electrolytes. While there are many reports of attempts to prepare such membranes, it is difficult to make CM membranes for practical applications. We report the preparation of CM membranes from laminated structures of charged-poly(vinyl alcohol) (PVA) membranes. The membranes were prepared by alternately stacking negatively charged base membranes and positively charged base membranes and by cutting the stack of charged layers. Permeation experiments were performed in a dialysis system consisting of the membrane and mixed solutions of KCl and sucrose. Although the salt flux through the membrane was about 30 times less than that through the charge mosaic membrane Desalton® (Tosoh Co. Ltd.), which was prepared using microphase separation, the permselectivity for salt of our membrane is more than 30 times higher than that of Desalton®.  相似文献   

15.
The relationship between the surface charge of potassium titanyl phosphate (KTP), studied on powder suspensions, and filtration properties of KTP nanofiltration membranes was studied. An experimental investigation of KTP powder characterization in different electrolytic solutions is presented: electrophoretic measurements show that the colloid particles are negatively charged whatever the solution pH, although they present a point of zero charge about 7.8. The selectivity of the membrane depends on the charge and size of ions. The interactions between the membrane and charged species have to be taken into account to explain the transfer through the membrane. With salts having the same cation, the rejection is higher for divalent anions than for monovalent anions. The best rejection rate is observed for applied pressure lower than 7 bar.  相似文献   

16.
The properties of amphiphilic block copolymer membranes can be tailored within a wide range of physical parameters. This makes them promising candidates for the development of new (bio)sensors based on solid-supported biomimetic membranes. Here we investigated the interfacial adsorption of polyelectrolyte vesicles on three different model substrates to find the optimum conditions for formation of planar membranes. The polymer vesicles were made from amphiphilic ABA triblock copolymers with short, positively charged poly(2,2-dimethylaminoethyl methacrylate) (PDMAEMA) end blocks and a hydrophobic poly( n-butyl methacrylate) (PBMA) middle block. We observed reorganization of the amphiphilic copolymer chains from vesicular structures into a 1.5+/-0.04 nm thick layer on the hydrophobic HOPG surface. However, this film starts disrupting and dewetting upon drying. In contrast, adsorption of the vesicles on the negatively charged SiO2 and mica substrates induced vesicle fusion and formation of planar, supported block copolymer films. This process seems to be controlled by the surface charge density of the substrate and concentration of the block copolymers in solution. The thickness of the copolymer membrane on mica was comparable to the thickness of phospholipid bilayers.  相似文献   

17.
本文采用脂质体/水分配系统来考察pH、磷脂的种类和荷电性对药物与有序磷脂膜结合的影响.  相似文献   

18.
The effect of pH on the interfacial adsorption activity of pulmonary surfactant was examined. Measurements of the surface tension were made in a Wilhelmy-like surface microbalance specially designed to assay small volumes of hypophase in thermostatically controlled conditions. Alkaline pH caused a significant decrease of the surface activity of both pulmonary surfactant and a lipid extract from surfactant (LES) (containing all of the lipids and surfactant protein-B (SP-B) and surfactant protein-C (SP-C) hydrophobic surfactant proteins, but lacking surfactant protein-A). The pK calculated from the change of surface activity versus pH was 9.18±0.26 and 9.27±0.31 for pulmonary surfactant and LES, respectively. The results from this study support the idea that electrostatic interactions between basic residues of SP-B and SP-C and negatively charged surfactant phospholipids could be important for the interfacial adsorption activity of pulmonary surfactant.  相似文献   

19.
The hydrolytic activity of phospholipase A2 (PLA2) against the dipalmitoylphosphatidylcholine monolayer formed at the nitrobenzene-water interface has been studied under the control of the potential drop across the monolayer. The activities of both porcine pancreatic and Naja naja PLA2S was the highest when the potential of the nitrobenzene phase was 60 mV negative with respect to that of the aqueous phase. The local electrostatic interaction between the positively charged domain, the recognition site, of PLA2 molecules with the negatively charged substrate side of the interface, where zwitterionic substrate molecules and negatively charged product molecules were adsorbed, is an important factor in determining the interfacial enzymatic activity. Irreversible adsorption of PLA2 molecules on the substrate monolayer is confirmed, giving unequivocal evidence for the scooting mode of hydrolysis by PLA2.  相似文献   

20.
The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ~6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号