首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Koper TM  Lebedeva NP  Hermse CG 《Faraday discussions》2002,(121):301-11; discussion 331-64
We consider theoretical models for CO monolayer oxidation on stepped Pt single-crystal electrodes and Ru-modified Pt(111) electrodes. For both systems, our aim is to assess the importance of CO surface diffusion in reproducing the experimental chronoamperometry or voltammetry. By comparing the simulations with the experimental chronoamperometric transients for CO oxidation on a series of stepped Pt surfaces, it was concluded that mixing of CO on the Pt(111) terrace is good, implying rapid diffusion (N. P. Lebedeva, M. T. M. Koper, J. M. Feliu and R. A. van Santen, J. Phys. Chem. B, submitted). We discuss here a more detailed model in which the CO adsorbed on steps is converted into CO adsorbed on terraces as the oxygen-containing species occupy the steps (as observed experimentally on stepped Pt in UHV), followed by a subsequent oxidation of the latter, to reproduce the observed chronoamperometry on stepped surfaces with a higher step density. On Ru-modified Pt(111), the experimentally observed splitting of the CO stripping voltammetry into two stripping peaks, may suggest a slow diffusion of CO on Pt(111). This apparent contradiction with the conclusions of the experiments on stepped surfaces, is resolved by assuming a weaker CO binding to a Pt atom which has Ru neighbors than to "bulk" Pt(111), in agreement with recent quantum-chemical calculations. This makes the effective diffusion from the uncovered Pt(111) surface to the perimeter of the Ru islands, which are considered to be the active sites in CO oxidation electrocatalysis on PtRu surfaces, very slow. Different models for the reaction are considered, and discussed in terms of their ability to explain experimental observations.  相似文献   

2.
Electrochemical Ru deposits on Pt(111) surfaces are investigated by STM; the images of the Ru-modified surfaces show islands of monoatomic height and between 2–5 nm in diameter. The density of islands on the surface depends on the Ru deposition potential (observed by STM and XRSD) and the cyclic voltammograms indicate an increasing Ru coverage for lower deposition potentials. The Ru surface coverage is determined by ex-situ XPS measurements and a linear dependence of the Ru coverage on the deposition potential is demonstrated. IR spectra of a monolayer of adsorbed CO on the Ru-modified Pt(111) surfaces show distinct bands for CO adsorbed on Pt and on Ru. For the integrated band intensity of the CO/Ru vibration a linear dependence on deposition potential is found indicating that lateral dipole interactions between CO adsorbed on Pt and Ru are unimportant and that the CO coverage on the Ru islands is constant for the Ru coverages investigated. The possibility of using adsorbate vibrational bands for the determination of the coverage of deposits is discussed. Received: 24 June 1996 / Revised: 6 December 1996 / Accepted: 12 December 1996  相似文献   

3.
The adsorption properties of structurally well defined bimetallic Pt/Ru(0001) surfaces, consisting of a Ru(0001) substrate partly or fully covered by monolayer Pt islands or a monolayer Pt film, were studied by temperature programmed desorption (TPD) using CO and deuterium as probe molecules. Additionally, the adsorption of CO was investigated by infrared reflection absorption spectroscopy (IRAS). The presence of the pseudomorphic platinum islands or monolayer film leads to considerable modifications of the adsorption properties for both adsorbates, both on the Pt covered and, to a smaller extent, on the bare Ru part of the surfaces. In addition to distinct weakly bound adspecies, which are adsorbed on the monolayer Pt islands, we find unique contributions from island edge desorption, from spill-over processes during the desorption run, and a general down-shift of the peak related to desorption from Pt-free Ru(0001) areas with increasing Pt coverage. These effects, which we consider as characteristic for adsorption on bimetallic surfaces with large contiguous areas of the respective types, are discussed in detail.  相似文献   

4.
在1mmol·L-1H2PtCl6+1mmol·L-1RuCl3+0.1mol·L-1H2SO4镀液中采用电沉积法在化学镀金膜的红外窗口Si反射面上制备Pt50Ru50合金电极.利用原子力显微镜(AFM)可以观察到制备的Pt50Ru50合金电极形貌呈现出100-200nm大小的颗粒.常规电化学分析方法得出该电极具有典型的合金特征,对CO和CH3OH具有很好的催化氧化作用.应用电化学现场衰减全反射表面增强红外光谱法(ATR-SEIRAS)可以观察到该电极上Pt位和Ru位上CO的振动谱峰,且表现出Pt-Ru二元金属良好的协同催化性能.  相似文献   

5.
We demonstrate that the (local) adsorbed carbon monoxide, COad, coverage on the Pt-free areas of bimetallic Pt/Ru(0001) surfaces (a Ru(0001) substrate partly covered by Pt monolayer islands) can be increased to ∼0.80 monolayers (ML), well above the established saturation COad coverage of 0.68 ML, even under ultrahigh vacuum conditions by using spill-over of CO adsorbed on the Pt islands to the Ru areas as an highly effective adsorption channel. The apparent COad saturation coverage of 0.68 ML on pure Ru(0001) is identified as due to kinetic limitations, hindering further uptake from the gas phase, rather than being caused by thermodynamic reasons. This spill-over mechanism is proposed to be a general phenomenon for adsorption on bimetallic surfaces.  相似文献   

6.
A randomly mixed monodispersed nanosized Pt-Ru catalyst, an ultimate catalyst for CO oxidation reaction, was prepared by the rapid quenching method. The mechanism of CO oxidation reaction on the Pt-Ru anode catalyst was elucidated by investigating the relation between the rate of CO oxidation reaction and the current density. The rate of CO oxidation reaction increased with an increase in unoccupied sites kinetically formed by hydrogen oxidation reaction, and the rate was independent of anode potential. Results of extended X-ray absorption fine structure spectroscopy showed the combination of N(Pt-Ru)/(N(Pt-Ru) + N(Pt-Pt)) ? M(Ru)/(M(Pt) + M(Ru)) and N(Ru-Pt)/(N(Ru-Pt) + N(Ru-Ru)) ? M(Pt)/(M(Ru) + M(Pt)), where N(Pt-Ru)(N(Ru-Pt)), N(Pt-Pt)(N(Ru-Ru)), M(Pt), and M(Ru) are the coordination numbers from Pt(Ru) to Ru(Pt) and Pt (Ru) to Pt (Ru) and the molar ratios of Pt and Ru, respectively. This indicates that Pt and Ru were mixed with a completely random distribution. A high-entropy state of dispersion of Pt and Ru could be maintained by rapid quenching from a high temperature. It is concluded that a nonelectrochemical shift reaction on a randomly mixed Pt-Ru catalyst is important to enhance the efficiency of residential fuel cell systems under operation conditions.  相似文献   

7.
Changes in the properties of CO adsorbed at saturation coverages on Pt(100) induced by subsequent coadsorption of fixed amounts of D2O at 105 K in ultrahigh vacuum (UHV) were monitored by time-resolved infrared reflection absorption spectroscopy (tr-IRAS). The linear- and bridge-bonded CO stretching features were found to change in intensity and shift toward lower energies as a function of time at fixed CO and D2O coverages. Also observed was the development of multiple features in both CO spectral regions depending on the amount of D2O on the surface. These findings indicate that, under the conditions of these experiments, the interfacial dynamics are relatively slow, on the order of minutes, involving a gradual rearrangement of adsorbed CO and D2O on the surface to yield surface solvated CO, as has been suggested in the literature (Kizhakevariam et al. J. Chem. Phys. 1994, 100, 6750). This factor should be considered when comparing, quantitatively, shifts induced by water coadsorption with CO on Pt single crystals in UHV with CO adsorption on the same surfaces in electrochemical environments.  相似文献   

8.
Adsorption of small amounts of D(2)O (ca. 0.01 L exposure) on CO(sat)/Pt(100) surfaces in ultrahigh vacuum at 105 K was found to split the asymmetric peak at 2100 cm(-1) in the infrared reflection absorption spectra attributed to the stretching of CO adsorbed on atop sites into two clearly defined features: an intense component, which shifted toward lower energies due to surface hydration of adsorbed CO (originally at 2100 cm(-1), peak a), and a smaller peak centered at 2094 cm(-1) (peak b), which remained fixed in position even after closing the D(2)O dosing valve. The energies of peaks a and b, as determined by statistical analyses, correlated very well with those reported in the literature for CO adsorbed at high coverages on Pt(100) originally in the (5 x 20) or (hex) reconstruction, and on the unreconstructed Pt(100)-(1 x 1), respectively, at 90 K. On these bases, the asymmetry of the peak observed for CO(sat)/Pt(100) (no D(2)O dosing) is ascribed to the presence of CO linearly adsorbed on these two different sites on the surface, for which the rate of hydration is larger for the (5 x 20) compared to the (1 x 1) phases.  相似文献   

9.
Au-Pt bimetallic nanoclusters on a thin film of Al(2)O(3)/NiAl(100) undergo significant structural evolution on variation of the temperature. Au and Pt deposited sequentially from the vapor onto thin-film Al(2)O(3)/NiAl(100) at 300 K form preferentially bimetallic nanoclusters (diameter ≦ 6.0 nm and height ≦ 0.8 nm) with both Au and Pt coexisting at the cluster surface, despite the order of metal deposition. These bimetallic clusters are structurally ordered, have a fcc phase and grow with their facets either (111) or (001) parallel to the θ-Al(2)O(3)(100) surface. Upon annealing the clusters to 400-500 K, the Au atoms inside the clusters migrate toward the surface, resulting in formation of a structure with a Pt core and an Au shell. Annealing the sample to 500-650 K reorients the bimetallic clusters--all clusters have their (001) facets parallel to the oxide surface--and induces oxidation of Pt. Such annealed bimetallic clusters become encapsulated with the aluminium-oxide materials and a few Au remain on the surface.  相似文献   

10.
CO adsorption on Ru-Sn/SiO(2) catalysts of various Sn/(Ru+Sn) ratios was examined by Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS). The catalysts were prepared by the incipient wetness impregnation method. Catalysts were activated by H(2) reduction at 773 K. CO adsorbed on the catalysts shows spectra whose band frequencies are divided into three groups: (i) High Frequency Region (HFR), containing a band at 2065 cm(-1), (ii) Low Frequency Region 1 (LFR(1)), containing bands at 2040-2015 cm(-1), (iii) Low Frequency Region 2 (LFR(2)), containing bands at 1990 and 1945 cm(-1). The types of adsorbed CO species formed strongly depend on the ratio Sn/(Ru+Sn) in the catalyst, CO pressure and temperature of adsorption. Adsorption of CO on Ru sites in the Ru/SiO(2) catalyst results in LFR(1) bands at 2040-2015 cm(-1), which are independent of the CO pressure but the adsorption complexes are easily destroyed by raising the temperature. The addition of Sn to the catalyst creates new sites for CO adsorption. After adsorption at 298 K, the HFR band at 2065 cm(-1) and LFR(2) bands at 1990-1950 cm(-1) are observed. The relative intensities of these bands increase with increasing Sn-content in the samples. The LFR bands are thermally stable while the HFR band is not. The formation of the corresponding species is favored by increasing the CO pressure. Adsorbed CO species giving LFR(1) bands are assigned to linearly-adsorbed CO on the Ru(0) and/or on the Ru-Sn alloy sites. Adsorbed CO species giving HFR bands are assigned to CO adsorption on Ru(delta+)-O-Sn sites. After low temperature CO adsorption on samples with high Sn-content, only species that show bands at 1990 and 1945 cm(-1) in LFR(2) are observed.  相似文献   

11.
Tong YY  Oldfield E  Wieckowski A 《Faraday discussions》2002,(121):323-30; discussion 331-64
Surface diffusion of chemisorbed CO (from MeOH electrochemisorption) on pure and Ru-modified nanoscale Pt electrocatalyst surfaces has been investigated by solid-state electrochemical NMR (EC-NMR) in the presence of supporting electrolyte. Temperature-dependent nuclear spin-spin and spin-lattice relaxation measurements enable the diffusion activation energy, E, to be deduced. It is shown that the activation energy E correlates with the steady state current for MeOH electro-oxidation. A simple two-dimensional collision theory model is proposed to explain this intriguing observation, which may provide new mechanistic insights into the promotion of CO-tolerance in Pt/Ru fuel cell catalysts.  相似文献   

12.
The reaction of Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(5)-C), 7, with Pt(PBu(t)(3))(2) yielded two products Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))], 8, and Ru(5)(CO)(12)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](2), 9. Compound 8 contains a Ru(5)Pt metal core in an open octahedral structure. In solution, 8 exists as a mixture of two isomers that interconvert rapidly on the NMR time scale at 20 degrees C, DeltaH() = 7.1(1) kcal mol(-1), DeltaS() = -5.1(6) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 8.6(3) kcal mol(-1). Compound 9 is structurally similar to 8, but has an additional Pt(PBu(t)(3)) group bridging an Ru-Ru edge of the cluster. The two Pt(PBu(t)(3)) groups in 9 rapidly exchange on the NMR time scale at 70 degrees C, DeltaH(#) = 9.2(3) kcal mol(-)(1), DeltaS(#) = -5(1) cal mol(-)(1) K(-)(1), and DeltaG(298)(#) = 10.7(7) kcal mol(-1). Compound 8 reacts with hydrogen to give the dihydrido complex Ru(5)(CO)(11)(eta(6)-C(6)H(6))(mu(6)-C)[Pt(PBu(t)(3))](mu-H)(2), 10, in 59% yield. This compound consists of a closed Ru(5)Pt octahedron with two hydride ligands bridging two of the four Pt-Ru bonds.  相似文献   

13.
运用原位FT-IR光谱和TPSR-MS等技术研究了负载Ru催化剂的金属表面状态. 结果表明催化剂中存在二类静态活性中心: (1)体现金属Ru本征特性的S_1中心, (2)金属与载体相互作用而产生的S_2中心. 在吸附CO及其加氢反应过程中, S_1中心上处于边、角、棱位置等配位不饱和的金属Ru原子或原子簇经CO剥蚀而产生的动态S_3活性中心. CO在S_1中心上以Ru~0—CO线式态吸附的, 其IR谱带位于1980~2060 cm~(-1)之间. Ru~0—CO在H_2流中进行程序升温加氢反应的TPSR-MS图上出现450 K左右的低温甲烷峰. 焙烧温度升高, 则在TPSR-MS谱图上出现两个甲烷峰, 600±50 K的高温甲烷峰归属为S_2中心上以Ru~(δ+)-CO线式态吸附CO加氢所致. IR谱图中的2075±50 cm~(-1)峰代表Ru~(δ+)-CO. IR谱中2135±5和2075±5 cm~(-1)这对峰的出现反映了S_3中心的形成.  相似文献   

14.
FTIR spectroscopy has been used to monitor the transport of CO to the Pt cores of Pt@CoO nanoparticles forming CO/Pt species. It was found that external Pt sites are not present on the outer surfaces of the approximately 10 nm diameter nanostructures and that CO transports to Pt adsorption sites by an activated surface diffusion process through the CoO shells surrounding approximately 2 nm diameter Pt cores. The CO transport process is not due to gas-phase transport below 300 K. The weakly bound adsorbed CO/CoO species responsible for transport was directly observed at approximately 2147 cm(-1) during transport through the CoO shells.  相似文献   

15.
We report the first observation of the 13C nuclear magnetic resonance spectroscopy (NMR) of 13CO, adsorbed from 13CO saturated 0.5 M sulfuric acid solutions, onto the surfaces of commercial Ru-black nanoparticles. The 13C NMR spectra consist of a symmetrically broadened peak having a large isotropic shift as compared to CO adsorbed onto supported Ru catalysts. The variation of the spin-lattice relaxation rate follows Korringa behavior, indicating the metallic nature of adsorbed CO, in addition to varying across the spectrum in a Korringa-like manner. Motional narrowing of the NMR spectrum at higher temperatures, together with an additional contribution to the spin-lattice relaxation rate, indicate that adsorbed CO undergoes rapid diffusion on the particle surfaces. A two-band model analysis of the NMR results indicates that the CO adsorption bond is weaker on Ru as compared to either Pt or Pd. This is also supported by a reduction in the activation energy for CO diffusion on Ru vs either Pt or Pd nanoparticles.  相似文献   

16.
ATR-FTIRAS measurements combined with linear potential sweep voltammetry were conducted to investigate oxidation of CO adsorbed on a highly dispersed Pt catalyst supported on carbon black, Pt/C, and carbon-unsupported Pt black catalyst, Pt-B. Bands nu(CO) of atop- and bridge-bonded COs were resolved into those of COs adsorbed at terrace and step edge sites by curve-fitting analysis. At the high coverage near the saturation, a band around 1950-1960 cm(-1) assigned to asymmetric bridge-bonded CO, CO(B)(asym), was observed to develop on both Pt/C and Pt-B, which was the predominant type on the latter. Preferential oxidation of atop-CO adsorbed at the step edge site was commonly observed on both Pt/C and Pt-B during the potential sweep from 0.05 to 1.2 V. However, it has been found that CO(B)(asym) is the most reactive species. The high reactivity of the CO(B)(asym) on Pt/C and Pt-B is demonstrated for the first time in the present report. Adsorption of CO on the Pt/C and Pt-B resulted in growth of a sharp nu(OH) band around 3642-3645 cm(-1) which is assigned to non-hydrogen-bonded water molecules coadsorbed with CO. The nu(OH) band frequency exhibits a linear increase with potential with a Stark tuning rate of ca. 20 cm(-1)/V. Analysis of the potential dependence of this band in the CO oxidation potential region led us to conclude that this is the oxygen-containing species to oxidize adsorbed CO. Stark tuning rates of nu(CO) bands for the COs at the terrace and step edge sites on both Pt/C and Pt-B are almost independent of the adsorption sites for both atop- and bridge-bonded COs. However, CO(B)(asym) exhibits tuning rates of 41 cm-1/V and 37 cm-1/ V on Pt/C and Pt-B, respectively, which is in between the rates of atop and symmetric bridge-bonded COs.  相似文献   

17.
CO adsorption on Ru(100) and Cs/Ru(10O) surfaces has been investigated using ARUPS, at low temperature 150K. The 5σ+1π and 4σ levels of CO molecule were found in angle-rcsolved UP spectra showing that CO is in molecular adsorption states on clean and Cs precovercd Ru(1010). The dependence of CO 4σ intensity on incident angle suggests that adsorbed CO stands upright on clean Ru(1010) surface; But adsorbed CO, with a short-range interaction with Cs atom [15], does not stand upright and tilts in <1210> azimuth on a Cs-precovered Ru(1010) surface.  相似文献   

18.
As starting materials for heterobimetallic complexes, [RuCp(PPh(3))CO(PPh(2)H)]PF(6) and [RuCp(PPh(3))CO(eta(1)-dppm)]PF(6) were prepared from RuCp(PPh(3))(CO)Cl. In the course of preparing [RuCp(eta(2)-dppm)(eta(1)-dppm)]Cl from RuCp(Ph(3)P)(eta(1)-dppm)Cl, the new monomer RuCpCl(eta(1)-dppm)(2) was isolated. The uncommon coordination mode of the two monodentate bis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) ?, b = 14.869(2) ?, c = 15.447(2) ?, alpha = 84.63(1) degrees, beta = 70.55(1) degrees, gamma = 72.92(1) degrees, V = 2378.7(5) ?(3), d(calc) = 1.355 g cm(-)(3) (298 K), triclinic, P&onemacr;, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh(3))Cl(&mgr;-dppm)PtCl(2), RuCpCl(&mgr;-dppm)(2)PtCl(2), and [RuCp(PPh(3))CO(&mgr;-dppm)PtCl(2)]PF(6) each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO)(3)(&mgr;-dppm)(2)Pt(H)]PF(6) and [MoCp(CO)(2)(&mgr;-PPh(2))(&mgr;-H)Pt(PPh(3))(MeCN)]PF(6) were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.  相似文献   

19.
The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.  相似文献   

20.
Spectra obtained by electrochemical infrared reflection absorption spectroscopy (EC-IRAS) for carbon monoxide (CO) adlayers formed by partial CO dosing on various ruthenium-decorated platinum nanoparticle films are reported. The need to achieve a well distributed rather than aggregated metal nanoparticle array is demonstrated, given that such nanoparticle aggregates induce complex dielectric behavior. The strategy here is to use an "organic glue matrix" (short chain SAMs) between the nanoparticles and the gold substrates. The observed promotion in CO electrooxidation by the existence of a Ru island on Pt nanoparticles, of interest to fuel-cell catalysis, showed a strong relationship with Ru surface concentrations, consistent with previous studies on single crystal or polycrystalline bimetallic surfaces. Two distinctive CO infrared bands, one for the Pt-CO and one for Ru-CO domain were found after the dipole coupling of CO within the two CO domains was minimized. Interestingly, those two CO bands showed independent electrooxidation behavior with electrode potential changes. Also, it is shown that the electrooxidation of CO on large Ru islands is less facile than on small Ru islands. In addition, the activity of commercial Pt/Ru alloy nanoparticles to CO stripping was tested and IRAS spectra were reported as a comparison to our Ru-decorated Pt nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号