首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of atomic disordering on the magnetic, electrical, and optical properties of the Pt74.1Fe25.9alloy close in composition to the stoichiometric Pt3Fe alloy has been studied. It has been shown that, as a result of severe plastic torsional deformation under high pressure, the alloy transforms from the antiferromagnetic state (T N=164 K) into the ferromagnetic state (T C≈400 K). In this case, the residual electrical resistivity increases by a factor of more than two and the thermopower changes its sign from positive to negative. The results of the studies of the optical conductivity agree with the previously calculated electronic spectra of the atomically ordered and disordered Pt3Fe alloys in the range of interband transitions and with the obtained data on the electrical properties in the infrared range.  相似文献   

2.
The effect of ultrarapid quenching from the melt and severe plastic torsional deformation under high pressure on the crystalline structure and the electrical, optical, and magnetic properties of a Ni2.16Mn0.84Ga alloy was studied. The electrical properties are discussed in terms of the Mott two-band model. The peculiarities of the magnetic properties are associated with the magnetism of itinerant electrons. The optical properties correlate with the variations in the electronic spectrum upon disordering of the alloy that follow from the results of the available energy-band-structure calculations.  相似文献   

3.
It was proven experimentally that the structural disordering inherent to fine-grained high-temper- ature YBa2Cu3O y superconductors (with an average grain size of 〈D〉 < 2 μm) leads to a reduction of the level of hole doping and the creation of features inherent to the pseudogap state (antiferromagnetic correlations and the lowered density of states at the Fermi level) even in samples with optimum oxygen content y ≈ 6.92.  相似文献   

4.
The short-range order around boron, aluminum, and iron atoms in Fe75B25 and Fe70Al5B25 amorphous alloys has been studied by 11B and 27Al nuclear magnetic resonance at 4.2 K and 57Fe Mössbauer spectroscopy at 87 and 295 K. The average magnetic moment of iron atoms μ(Fe) in these alloys has been measured by a vibrating sample magnetometer. It has been revealed that the substitution of aluminum atoms for iron atoms does not disturb μ(Fe) in the Fe70Al5B25 alloy, gives rise to an additional contribution to the 11B NMR spectrum in the low-frequency range, and shifts maxima of the distribution of hyperfine fields at the 57Fe nuclei. In the Fe70Al5B25 amorphous alloy, the aluminum atoms substitute for iron atoms in the nearest coordination shells of boron and iron atoms. This alloy consists of nanoclusters in which boron and iron atoms have a short-range order of the tetragonal Fe3B phase type.  相似文献   

5.
The effect of atomic disordering on the optical properties of Pt74.1Fe25.9 alloy, whose stoichiometry is close to that of Pt3Fe, has been investigated. The optical constants of ordered and plastically deformed alloys, which are, respectively, in the paramagnetic and ferromagnetic states, have been measured by the polarimetric method. The frequency dispersions of the permittivity, optical conductivity, and reflectivity, as well as the microscopic characteristics of conduction electrons (plasma and relaxation frequencies), have been calculated. The energy dependences of the optical conductivity are compared to the calculated energy-band structure of atomically ordered and disordered Pt3Fe compounds.  相似文献   

6.
The effects of oxygen vacancy disordering in structural features and magnetic characteristics of SrFeO2.5 are studied by the LMTO method in frameworks of the LSDA+U formalism in supercell approximation. Results clearly show that the high-temperature pseudocubic phase of SrFeO2.5 may contain iron ions in five-fold oxygen coordination.  相似文献   

7.
8.
The processes of lithium redistribution in the structure of cubic Li4Ti5O12 spinel, caused by both chromium doping and thermal activation, have been investigated by nuclear magnetic resonance. It is shown that Li ions migrate from tetra- to octahedral crystallographic positions with an increase in temperature. This process becomes more pronounced at temperatures above 400 K. In contrast, the fraction of tetrahedrally coordinated Li increases as a result of doping with chromium.  相似文献   

9.
The electrical, magnetic, and optical properties of the Cu72Au24Ag4 ternary alloy in the ordered and disordered states have been studied by the method of severe torsional plastic deformation under pressure in Bridgman anvils. It has been shown that, as a result of this deformation, the residual electrical resistivity of the alloy increases by approximately 11% and the magnitude of the negative thermopower decreases. The high diamagnetic susceptibility of the alloy has been explained by a significant role of charge carriers with the effective mass considerably smaller than the free-electron mass. The behavior of the optical conductivity has been discussed with due regard for the results of energy-band calculations. The experimental data obtained for the Cu72Au24Ag4 alloy have been compared with the results of similar studies of the Cu3Au binary alloy.  相似文献   

10.
The optical properties of Fe78Si10B12 ferromagnetic alloy in amorphous, crystalline, and intermediate structural states have been investigated by ellipsometry in the spectral range of 0.22–18 μm. It is established that alloy crystallization leads to a significant change in the optical constants and the frequency dependences of the dielectric functions calculated based on these optical constants. The structural reconstruction under heat treatment leads to an increase in the intensity and shift of interband absorption bands. The plasma and relaxation frequencies of conduction electrons are determined; their numerical values also depend on the degree of atomic ordering.  相似文献   

11.
The effect of atomic disordering induced by melt quenching or severe plastic deformation via high-pressure torsion on the physical properties (thermal expansion coefficient, electrical resistivity, thermoelectric power, magnetization) of a stoichiometric Ni50Mn25Ga25 alloy and nonstoichiometric Ni50Mn28.5Ga21.5 alloys with 2 at % Cu or Co is studied in the temperature range 2 K ≤ T ≤ 900 K and the magnetic field range H ≤ 7 MA/m.  相似文献   

12.
Investigation of the specific features of order-disorder structural phase transitions in ordering alloys in the presence of antiphase boundaries of conservative and nonconservative types has been performed in a computer experiment by the example of the model Cu3Au alloy. The distributions of the long-range and short-range order parameters in the planes parallel to antiphase boundaries have been obtained by the Monte Carlo method for different temperatures. The mechanisms of disordering near conservative and nonconservative boundaries in ordering alloys are revealed. It is shown that the effect of diffusion of superstructural parameters is significant near nonconservative antiphase boundaries in comparison with conservative boundaries. Obviously, nonconservative boundaries can make a relatively large contribution to the effect of positive temperature dependence of the yield strength of ordering alloys with the L12 superstructure.  相似文献   

13.
The morphology, phase composition and surface structure of Fe75Si25-alloy particles are studied by electron microscopy, X-ray diffraction analysis, and Mössbauer, Auger, IR (infrared) and X-ray photoelectron spectroscopy. The alloy particles used as fillers for the polyethylene matrix are produced by high-energy ball milling in an organic medium with the addition of stearic acid. The addition of stearic acid is shown to promote plasticization of the brittle Fe75Si25 alloy and the formation of a surface layer of no more than 1.5 nm thick, consisting of oxides based on iron and silicon, responsible for the chemisorption of stearic acid on the surface. Chemical modification of the surface of filler particles with an amphiphilic surfactant is carried out to enhance their adhesion in the polymer matrix.  相似文献   

14.
The effects of Fe doping on Mn site in the colossal magnetoresistive film, Nd0.67Sr0.33MnO3 have been studied by preparing the series Nd0.67Sr0.33Mn1-xFexO3 (x=0,0.05 and 0.1). Upon doping, no structural changes have been found. However, the Curie temperature, the associated metal-to-insulator transition temperature and the magnetization decrease drastically with Fe doping. The resistivity in the paramagnetic regime for all the samples follows Emin–Holsteins theory of small polaron. The polaron activation energy, Wp and resistivity coefficient, A increase with Fe doping. This effect may be ascribed to the fact that upon Fe doping, the long-range ferromagnetic order is destroyed and, therefore, Wp is enhanced in the system. As compared to the La-based system, Fe doping has a stronger tendency to destabilize the long-range ferromagnetic order in the Nd-based system. Large MR (as high as 90%) observed in the epitaxial NSMFO film may be attributed to the good lattice-matching between the grown film and substrate. PACS 75.47.Gk; 75.47.Lx; 75.70.-i  相似文献   

15.
Spinel LiNi0.5Mn1.5O4 cathode materials with different lithium excess amount (0, 2%, 6%, 10%) were synthesized by a facile solid-state method. The effect of lithium excess amount on the microstructure, morphology, and electrochemical properties of LiNi0.5Mn1.5O4 materials was systematically investigated. The results show that the lithium excess amount does not change the particle morphology and size obviously; thus, the electrochemical properties of LiNi0.5Mn1.5O4 are mainly determined by structural characteristics. With the increase of lithium excess amount, the cation disordering degree (Mn3+ content) and phase purity first increase and then decrease, while the cation mixing extent has the opposite trend. Among them, the LiNi0.5Mn1.5O4 material with 6% lithium excess amount exhibits higher disordering degree and lower impurity content and cation mixing extent, thus leading to the optimum electrochemical properties, with discharge capacities of 125.0, 126.1, 124.2, and 118.9 mAh/g at 0.2-, 1-, 5-, and 10-C rates and capacity retention rate of 96.49% after 100 cycles at 1-C rate.  相似文献   

16.
The effect of severe plastic deformation by torsion under Bridgman anvil pressure (SPDT) on the electrical, magnetic, and optical properties of the Cu60Pd40 alloy was studied. It is shown that, after the alloy is disordered, the Curie-Weiss constants of the paramagnetic component are changed insignificantly. In this case, the temperature-independent negative component of the magnetic susceptibility decreases more than fivefold. The electrical resistance and negative thermopower, on the contrary, increase severalfold as a result of SPDT. The character of the optical conductivity is discussed using the band structure calculation results.  相似文献   

17.
Thermal decomposition of the nonstoichiometric high-temperature superconductor YBa2Cu3O6.8 at a temperature of 200°C in air has been investigated using the full-profile analysis of X-ray diffraction lines. Two mechanisms of decomposition are revealed. The first mechanism, i.e., separation into two phases with a different oxygen content, occurs continuously. The second mechanism, i.e., disordering of the heavy atoms Y, Ba, Ba, Y along the crystallographic axis c, begins to occur after a 20- to 35-h annealing and progresses with a further annealing.  相似文献   

18.
We report on the synthesis conductions and results of experimental investigations of the crystal structure and magnetic properties of a new magnetic compound YbFeTi2O7. According to the X-ray diffractometry data, the crystal structure of the investigated compound is described by the rhombic space group Pcnb with unit cell parameters of a = 9.8115(1) Å, b = 13.5106(2) Å, and c = 7.31302(9) Å and atomic disordering in the distribution of iron ions Fe3+ over five structural sites. The magnetic measurements in the lowtemperature region revealed a kink in the temperature dependence of the magnetic moment and its dependence on the sample magnetic prehistory. The experimental results obtained suggest that with a decrease in temperature the sample passes from the paramagnetic state to the spin-glass-like magnetic state characterized by a freezing temperature of T f = 4.5 K at the preferred antiferromagnetic exchange coupling in the sample spin system. The chemical pressure variation upon replacement of rare-earth ion R by Yb in the RFeTi2O7 system does not change the crystal lattice symmetry and magnetic state.  相似文献   

19.
We present the results of measurements of low-temperature heat capacity, as well as electrical and magnetic properties of Heusler alloys Fe2VAl and Fe2CrAl prepared in different ways using various heat treatment regimes. The density of states at the Fermi level is estimated. A contribution of ferromagnetic clusters in the low-temperature heat capacity of the Fe2VAl alloy is detected. The change in the number and volume of clusters as a result of annealing of an alloy affects the behavior of their low-temperature heat capacity, resistivity, and magnetic properties.  相似文献   

20.
Magnetic anisotropies of 20 nm epitaxial film of palladium–iron alloy Pd0.92Fe0.08 grown on the (001) MgO substrate were studied. Ferromagnetic resonance (FMR) spectroscopy and vibrating sample magnetometry (VSM) were exploited to determine magnetic parameters of the film. It was found that the synthesized film reveals cubic anisotropy with tetragonal distortion. The simulated magnetic hysteresis loops, obtained utilizing the magnetic anisotropy constants taken from the FMR spectra analysis, agree well with those measured by VSM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号