首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We consider the generalized version of the classical Minimum Spanning Tree problem where the nodes of a graph are partitioned into clusters and exactly one node from each cluster must be connected. We present a Variable Neighborhood Search (VNS) approach which uses three different neighborhood types. Two of them work in complementary ways in order to maximize search effectivity. Both are large in the sense that they contain exponentially many candidate solutions, but efficient polynomial-time algorithms are used to identify best neighbors. For the third neighborhood type we apply Mixed Integer Programming to optimize local parts within candidate solution trees. Tests on Euclidean and random instances with up to 1280 nodes indicate especially on instances with many nodes per cluster significant advantages over previously published metaheuristic approaches. This work is supported by the RTN ADONET under grant 504438.  相似文献   

3.
The prize-collecting generalized minimum spanning tree problem (PC-GMSTP), is a generalization of the generalized minimum spanning tree problem (GMSTP) and belongs to the hard core of -hard problems. We describe an exact exponential time algorithm for the problem, as well we present several mixed integer and integer programming formulations of the PC-GMSTP. Moreover, we establish relationships between the polytopes corresponding to their linear relaxations and present an efficient solution procedure that finds the optimal solution of the PC-GMSTP for graphs with up 240 nodes.  相似文献   

4.
This paper is concerned with a special case of the generalized minimum spanning tree problem. The problem is defined on an undirected graph, where the vertex set is partitioned into clusters, and non-negative costs are associated with the edges. The problem is to find a tree of minimum cost containing at least one vertex in each cluster. We consider a geometric case of the problem where the graph is complete, all vertices are situated in the plane, and Euclidean distance defines the edge cost. We prove that the problem is strongly -hard even in the case of a special structure of the clustering called grid clustering. We construct an exact exponential time dynamic programming algorithm and, based on this dynamic programming algorithm, we develop a polynomial time approximation scheme for the problem with grid clustering.  相似文献   

5.
Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics have been proposed and analyzed. In a currently ongoing project, we investigate an intelligent optimization algorithm to solve the problem. It is obtained by the basic Variable Neighbourhood Search heuristic with the integration of other complements from machine learning, statistics and experimental algorithmics, in order to produce high-quality performance and to completely automate the resulting optimization strategy. Computational experiments show that the proposed metaheuristic has high-quality performance for the MLST problem and it is able to obtain optimal or near-optimal solutions in short computational running time.  相似文献   

6.
We propose a GRASP using an hybrid heuristic-subproblem optimization approach for the Multi-Level Capacitated Minimum Spanning Tree (MLCMST) problem. The motivation behind such approach is that to evaluate moves rearranging the configuration of a subset of nodes may require to solve a smaller-sized MLCMST instance. We thus use heuristic rules to define, in both the construction and the local search phases, subproblems which are in turn solved exactly by employing an integer programming model. We report numerical results obtained on benchmark instances from the literature, showing the approach to be competitive in terms of solution quality. The proposed GRASP have in fact improved the best known upper bounds for almost all of the considered instances.  相似文献   

7.
This paper proposes a GRASP (Greedy Randomized Adaptive Search Procedure) algorithm for the multi-criteria minimum spanning tree problem, which is NP-hard. In this problem a vector of costs is defined for each edge of the graph and the problem is to find all Pareto optimal or efficient spanning trees (solutions). The algorithm is based on the optimization of different weighted utility functions. In each iteration, a weight vector is defined and a solution is built using a greedy randomized constructive procedure. The found solution is submitted to a local search trying to improve the value of the weighted utility function. We use a drop-and-add neighborhood where the spanning trees are represented by Prufer numbers. In order to find a variety of efficient solutions, we use different weight vectors, which are distributed uniformly on the Pareto frontier. The proposed algorithm is tested on problems with r=2 and 3 criteria. For non-complete graphs with n=10, 20 and 30 nodes, the performance of the algorithm is tested against a complete enumeration. For complete graphs with n=20, 30 and 50 nodes the performance of the algorithm is tested using two types of weighted utility functions. The algorithm is also compared with the multi-criteria version of the Kruskal’s algorithm, which generates supported efficient solutions. This work was funded by the Municipal Town Hall of Campos dos Goytacazes city. The used computer was acquired with resource of CNPq.  相似文献   

8.
We develop ideas to enhance the performance of the variable neighborhood search (VNS) by guiding the search in the shaking phase, and by employing the Skewed strategy. For this purpose, Second Order algorithms and Skewed functions expressing structural differences are embedded in an efficient VNS proposed in the literature for the degree constrained minimum spanning tree problem. Given an undirected graph with weights associated with its edges, the degree constrained minimum spanning tree problem consists in finding a minimum spanning tree of the given graph, subject to constraints on node degrees. Computational experiments are conducted on the largest and hardest benchmark instances found in the literature to date. We report results showing that the VNS with the proposed strategies improved the best known solutions for all the hardest benchmark instances. Moreover, these new best solutions significantly reduced the gaps with respect to tight lower bounds reported in the literature.  相似文献   

9.
A new approach for solving the generalized assignment problem (GAP) is proposed that combines the exact branch & bound approach with the heuristic strategy of tabu search (TS) to produce a hybrid algorithm for solving GAP. The algorithm described uses commercial software to solve sub-problems generated by the TS guiding strategy. The TS approach makes use of the concept of referent domain optimisation and introduces novel add/drop strategies. In addition, the linear programming relaxation of GAP that forms part of the branch & bound approach is itself helpful in suggesting which variables might take binary values. Computational results on benchmark test instances are presented and compared with results obtained by the standard branch & bound approach and also several other heuristic approaches from the literature. The results show the new algorithm performs competitively against the alternatives and is able to find some new best solutions for several benchmark instances.  相似文献   

10.
This paper describes a tabu search heuristic for a vehicle routing problem where the owner of a private fleet can either visit a customer with one of his vehicles or assign the customer to a common carrier. The owner’s objective is to minimize the variable and fixed costs for operating his fleet plus the total costs charged by the common carrier. The proposed tabu search is shown to outperform the best approach reported in the literature on 34 benchmark instances with a homogeneous fleet.  相似文献   

11.
We introduce the prize-collecting generalized minimum spanning tree problem. In this problem a network of node clusters needs to be connected via a tree architecture using exactly one node per cluster. Nodes in each cluster compete by offering a payment for selection. This problem is NP-hard, and we describe several heuristic strategies, including local search and a genetic algorithm. Further, we present a simple and computationally efficient branch-and-cut algorithm. Our computational study indicates that our branch-and-cut algorithm finds optimal solutions for networks with up to 200 nodes within two hours of CPU time, while the heuristic search procedures rapidly find near-optimal solutions for all of the test instances.  相似文献   

12.
This paper introduces an iterated tabu search heuristic for the daily car sequencing problem in which a set of cars must be sequenced so as to satisfy requirements from the paint shop and the assembly line. The iterated tabu search heuristic combines a classical tabu search with perturbation operators that help escape from local optima. The resulting heuristic is flexible, easy to implement, and fast. It has produced very good results on a set of test instances provided by the French car manufacturer Renault.  相似文献   

13.
In this paper we study a two-dimensional non-guillotine cutting problem, the problem of cutting rectangular pieces from a large stock rectangle so as to maximize the total value of the pieces cut. The problem has many industrial applications whenever small pieces have to be cut from or packed into a large stock sheet. We propose a tabu search algorithm. Several moves based on reducing and inserting blocks of pieces have been defined. Intensification and diversification procedures, based on long-term memory, have been included. The computational results on large sets of test instances show that the algorithm is very efficient for a wide range of packing and cutting problems.  相似文献   

14.
This paper deals with the strongly NP-hard minmax regret version of the minimum spanning tree problem with interval costs. The best known exact algorithms solve the problem in reasonable time for rather small graphs. In this paper an algorithm based on the idea of tabu search is constructed. Some properties of the local minima are shown. Exhaustive computational tests for various classes of graphs are performed. The obtained results suggest that the proposed tabu search algorithm quickly outputs optimal solutions for the smaller instances, previously discussed in the existing literature. Furthermore, some arguments that this algorithm performs well also for larger instances are provided.  相似文献   

15.
This paper develops a greedy heuristic for the capacitated minimum spanning tree problem (CMSTP), based on the two widely known methods of Prim and of Esau–Williams. The proposed algorithm intertwines two-stages: an enhanced combination of the Prim and Esau–Williams approaches via augmented and synthetic node selection criteria, and an increase of the feasible solution space by perturbing the input data using the law of cosines. Computational tests on benchmark problems show that the new heuristic provides extremely good performance results for the CMSTP, justifying its effectiveness and robustness. Furthermore, excluding the feasible space expansion, we show that we can still obtain good quality solutions in very short computational times.  相似文献   

16.
Evolutionary algorithms are applied to problems that are not well understood as well as to problems in combinatorial optimization. The analysis of these search heuristics has been started for some well-known polynomial solvable problems. Such analyses are starting points for the analysis of evolutionary algorithms on difficult problems. We present the first runtime analysis of a multi-objective evolutionary algorithm on a NP-hard problem. The subject of our analysis is the multi-objective minimum spanning tree problem for which we give upper bounds on the expected time until a simple evolutionary algorithm has produced a population including for each extremal point of the Pareto front a corresponding spanning tree. These points are of particular interest as they give a 2-approximation of the Pareto front. We show that in expected pseudopolynomial time a population is produced that includes for each extremal point a corresponding spanning tree.  相似文献   

17.
We associate to each cost spanning tree problem a non-cooperative game, which is inspired by a real-life problem. We study the Nash equilibria and subgame perfect Nash equilibria of this game. We prove that these equilibria are closely related with situations where agents connect sequentially to the source.Finicial support from the Ministerio de Ciencia y Tecnologia and FEDER, and Xunta de Galicia through grants BEC2002-04102-C02-01 and PGIDIT03PXIC30002PN is gratefully acknowledged.  相似文献   

18.
A tabu search algorithm for solving economic lot scheduling problem   总被引:1,自引:0,他引:1  
The economic lot scheduling problem has driven considerable amount of research. The problem is NP-hard and recent research is focused on finding heuristic solutions rather than searching for optimal solutions. This paper introduces a heuristic method using a tabu search algorithm to solve the economic lot scheduling problem. Diversification and intensification schemes are employed to improve the efficiency of the proposed Tabu search algorithm. Experimental design is conducted to determine the best operating parameters for the Tabu search. Results show that the tabu search algorithm proposed in this paper outperforms two well known benchmark algorithms.  相似文献   

19.
We consider the robust minimum spanning tree problem where edges costs are on a compact and convex subset of Rn. We give the location of the robust deviation scenarios for a tree and characterizations of strictly strong edges and non-weak edges leading to recognition algorithms.  相似文献   

20.
The problem studied in this paper stems from a real application to the transportation of patients in the Hospital Complex of Tours (France). The ambulance central station of the Hospital Complex has to plan the transportation demands between care units which require a vehicle. Some demands are known in advance and the others arise dynamically. Each demand requires a specific type of vehicle and a vehicle can transport only one person at a time. The demands can be subcontracted to a private company which implies high cost. Moreover, transportations are subject to particular constraints, among them priority of urgent demands, disinfection of a vehicle after the transportation of a patient with contagious disease and respect of the type of vehicle needed. These characteristics involve a distinction between the vehicles and the crews during the modeling phase. We propose a modeling for solving this difficult problem and a tabu search algorithm inspired by Gendreau et al. (1999). This method supports an adaptive memory and a tabu search procedure. Computational experiments on a real-life instance and on randomly generated instances show that the method can provide high-quality solutions for this dynamic problem with a short computation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号