首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the computation of a rigorous lower error bound for the optimal value of convex optimization problems. A discussion of large-scale problems, degenerate problems, and quadratic programming problems is included. It is allowed that parameters, whichdefine the convex constraints and the convex objective functions, may be uncertain and may vary between given lower and upper bounds. The error bound is verified for the family of convex optimization problems which correspond to these uncertainties. It can be used to perform a rigorous sensitivity analysis in convex programming, provided the width of the uncertainties is not too large. Branch and bound algorithms can be made reliable by using such rigorous lower bounds.  相似文献   

2.
Portfolio optimization with linear and fixed transaction costs   总被引:1,自引:0,他引:1  
We consider the problem of portfolio selection, with transaction costs and constraints on exposure to risk. Linear transaction costs, bounds on the variance of the return, and bounds on different shortfall probabilities are efficiently handled by convex optimization methods. For such problems, the globally optimal portfolio can be computed very rapidly. Portfolio optimization problems with transaction costs that include a fixed fee, or discount breakpoints, cannot be directly solved by convex optimization. We describe a relaxation method which yields an easily computable upper bound via convex optimization. We also describe a heuristic method for finding a suboptimal portfolio, which is based on solving a small number of convex optimization problems (and hence can be done efficiently). Thus, we produce a suboptimal solution, and also an upper bound on the optimal solution. Numerical experiments suggest that for practical problems the gap between the two is small, even for large problems involving hundreds of assets. The same approach can be used for related problems, such as that of tracking an index with a portfolio consisting of a small number of assets.  相似文献   

3.
We consider a general convex stochastic control model. Our main interest concerns monotonicity results and bounds for the value functions and for optimal policies. In particular, we show how the value functions depend on the transition kernels and we present conditions for a lower bound of an optimal policy. Our approach is based on convex stochastic orderings of probability measures. We derive several interesting sufficient conditions of these ordering concepts, where we make also use of the Blackwell ordering. The structural results are illustrated by partially observed control models and Bayesian information models.  相似文献   

4.
We give analytical bounds on the Value-at-Risk and on convex risk measures for a portfolio of random variables with fixed marginal distributions under an additional positive dependence structure. We show that assuming positive dependence information in our model leads to reduced dependence uncertainty spreads compared to the case where only marginals information is known. In more detail, we show that in our model the assumption of a positive dependence structure improves the best-possible lower estimate of a risk measure, while leaving unchanged its worst-possible upper risk bounds. In a similar way, we derive for convex risk measures that the assumption of a negative dependence structure leads to improved upper bounds for the risk while it does not help to increase the lower risk bounds in an essential way. As a result we find that additional assumptions on the dependence structure may result in essentially improved risk bounds.  相似文献   

5.
The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing stochastic approximation (SA) type algorithms. To this end we show that while running a Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective value. We demonstrate that for a certain class of convex stochastic programs these bounds are comparable in quality with similar bounds computed by the sample average approximation method, while their computational cost is considerably smaller.  相似文献   

6.
It is well-known that if a random vector with given marginal distributions is comonotonic, it has the largest sum with respect to convex order. However, replacing the (unknown) copula by the comonotonic copula will in most cases not reflect reality well. For instance, in an insurance context we may have partial information about the dependence structure of different risks in the lower tail. In this paper, we extend the aforementioned result, using the concept of upper comonotonicity, to the case where the dependence structure of a random vector in the lower tail is already known. Since upper comonotonic random vectors have comonotonic behavior in the upper tail, we are able to extend several well-known results of comonotonicity to upper comonotonicity. As an application, we construct different increasing convex upper bounds for sums of random variables and compare these bounds in terms of increasing convex order.  相似文献   

7.
We prove polynomial-time solvability of a large class of clustering problems where a weighted set of items has to be partitioned into clusters with respect to some balancing constraints. The data points are weighted with respect to different features and the clusters adhere to given lower and upper bounds on the total weight of their points with respect to each of these features. Further the weight-contribution of a vector to a cluster can depend on the cluster it is assigned to. Our interest in these types of clustering problems is motivated by an application in land consolidation where the ability to perform this kind of balancing is crucial.Our framework maximizes an objective function that is convex in the summed-up utility of the items in each cluster. Despite hardness of convex maximization and many related problems, for fixed dimension and number of clusters, we are able to show that our clustering model is solvable in time polynomial in the number of items if the weight-balancing restrictions are defined using vectors from a fixed, finite domain. We conclude our discussion with a new, efficient model and algorithm for land consolidation.  相似文献   

8.
Comonotonicity provides a convenient convex upper bound for a sum of random variables with arbitrary dependence structure. Improved convex upper bound was introduced via conditioning by Kaas et al. [Kaas, R., Dhaene, J., Goovaerts, M., 2000. Upper and lower bounds for sums of random variables. Insurance: Math. Econ. 27, 151-168]. In this paper, we unify these results in a more general context using the concept of conditional comonotonicity. We also construct an approximating sequence of convex upper bounds with nice convergence properties.  相似文献   

9.
Solution techniques for some allocation problems   总被引:3,自引:0,他引:3  
This paper presents methods for solving allocation problems that can be stated as convex knapsack problems with generalized upper bounds. Such bounds may express upper limits on the total amount allocated to each of several subsets of activities. In addition our model arises as a subproblem in more complex mathematical programs. We therefore emphasize efficient procedures to recover optimality when minor changes in the parameters occur from one problem instance to the next. These considerations lead us to propose novel data structures for such problems. Also, we introduce an approximation method to solve certain equations, which arise during the procedures.  相似文献   

10.
In this study, the methods for computing the exact bounds and the confidence bounds of the dynamic response of structures subjected to uncertain-but-bounded excitations are discussed. Here the Euclidean norm of the nodal displacement is considered as the measurement of the structural response. The problem of calculating the exact lower bound, the confidence (outer) approximation and the inner approximation of the exact upper bound, and the exact upper bound of the dynamic response are modeled as three convex QB (quadratic programming with box constraints) problems and a problem of quadratic programming with bivalent constraints at each time point, respectively. Accordingly, the DCA (difference of convex functions algorithm) and the vertex method are adopted to solve the above convex QB problems and the quadratic programming problem with bivalent constraints, respectively. Based on the inner approximation and the outer approximation of the exact upper bound, the error between the confidence upper bound and the exact upper bound of dynamic response could be yielded. Specially, we also investigate how to obtain the confidence bound of the dynamic response of structures subjected to harmonic excitations with uncertain-but-bounded excitation frequencies. Four examples are given to show the efficiency and accuracy of the proposed method.  相似文献   

11.
An Algorithm for Strictly Convex Quadratic Programming with Box Constraints   总被引:1,自引:0,他引:1  
1IntroductionWeconsiderastrictlyconvex(i.e.,positivedefinite)quadraticprogrammingproblemsubjecttoboxconstraints:t-iereA=[aij]isannxnsymmetricpositivedefinitematrix,andb,canddaren-vectors.Letg(x)bethegradient,Ax b,off(x)atx.Withoutlossofgeneralityweassumebothcianddiarefinitenumbers,ci相似文献   

12.
Abstract

In this article, our main aim is to develop gap functions and error bounds for a (non-smooth) convex vector optimization problem. We show that by focusing on convexity we are able to quite efficiently compute the gap functions and try to gain insight about the structure of set of weak Pareto minimizers by viewing its graph. We will discuss several properties of gap functions and develop error bounds when the data are strongly convex. We also compare our results with some recent results on weak vector variational inequalities with set-valued maps, and also argue as to why we focus on the convex case.  相似文献   

13.
The approximation of the convex envelope of nonconvex functions is an essential part in deterministic global optimization techniques (Floudas in Deterministic Global Optimization: Theory, Methods and Application, 2000). Current convex underestimation algorithms for multilinear terms, based on arithmetic intervals or recursive arithmetic intervals (Hamed in Calculation of bounds on variables and underestimating convex functions for nonconvex functions, 1991; Maranas and Floudas in J Global Optim 7:143–182, (1995); Ryoo and Sahinidis in J Global Optim 19:403–424, (2001)), introduce a large number of linear cuts. Meyer and Floudas (Trilinear monomials with positive or negative domains: Facets of convex and concave envelopes, pp. 327–352, (2003); J Global Optim 29:125–155, (2004)), introduced the complete set of explicit facets for the convex and concave envelopes of trilinear monomials with general bounds. This study proposes a novel method to underestimate posynomial functions of strictly positive variables.  相似文献   

14.
In a recent work, we introduced the concept of convex extensions for lower semi-continuous functions and studied their properties. In this work, we present new techniques for constructing convex and concave envelopes of nonlinear functions using the theory of convex extensions. In particular, we develop the convex envelope and concave envelope of z=x/y over a hypercube. We show that the convex envelope is strictly tighter than previously known convex underestimators of x/y. We then propose a new relaxation technique for fractional programs which includes the derived envelopes. The resulting relaxation is shown to be a semidefinite program. Finally, we derive the convex envelope for a class of functions of the type f(x,y) over a hypercube under the assumption that f is concave in x and convex in y.  相似文献   

15.
In this paper we consider a multicommodity network flow problem with flow routing and discrete capacity expansion decisions. The problem involves trading off congestion and capacity assignment (or expansion) costs. In particular, we consider congestion costs involving convex, increasing power functions of flows on the arcs. We first observe that under certain conditions the congestion cost can be formulated as a convex function of the capacity level and the flow. Then, we show that the problem can be efficiently formulated by using conic quadratic inequalities. As most of the research on this problem is devoted to heuristic approaches, this study differs in showing that the problem can be solved to optimum by branch-and-bound solvers implementing the second-order cone programming (SOCP) algorithms. Computational experiments on the test problems from the literature show that the continuous relaxation of the formulation gives a tight lower bound and leads to optimal or near optimal integer solutions within reasonable CPU times.  相似文献   

16.
Separable sublinear functions are used to provide upper bounds on the recourse function of a stochastic program. The resulting problem's objective involves the inf-convolution of convex functions. A dual of this problem is formulated to obtain an implementable procedure to calculate the bound. Function evaluations for the resulting convex program only require a small number of single integrations in contrast with previous upper bounds that require a number of function evaluations that grows exponentially in the number of random variables. The sublinear bound can often be used when other suggested upper bounds are intractable. Computational results indicate that the sublinear approximation provides good, efficient bounds on the stochastic program objective value.This research has been partially supported by the National Science Foundation. The first author's work was also supported in part by Office of Naval Research Grant N00014-86-K-0628 and by the National Research Council under a Research Associateship at the Naval Postgraduate School, Monterey, California.  相似文献   

17.
A strong duality which states that the optimal values of the primal convex problem and its Lagrangian dual problem are equal (i.e. zero duality gap) and the dual problem attains its maximum is a corner stone in convex optimization. In particular it plays a major role in the numerical solution as well as the application of convex semidefinite optimization. The strong duality requires a technical condition known as a constraint qualification (CQ). Several CQs which are sufficient for strong duality have been given in the literature. In this note we present new necessary and sufficient CQs for the strong duality in convex semidefinite optimization. These CQs are shown to be sharper forms of the strong conical hull intersection property (CHIP) of the intersecting sets of constraints which has played a critical role in other areas of convex optimization such as constrained approximation and error bounds. Research was partially supported by the Australian Research Council. The author is grateful to the referees for their helpful comments  相似文献   

18.
We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term independently. We show that for a multilinear function having a single product term, this approach yields the convex and concave envelopes if the bounds on all variables are symmetric around zero. We then review and extend some results on conditions when the concave envelope of a multilinear function can be written as a sum of concave envelopes of its individual terms. Finally, for bilinear functions we prove that the difference between the concave upper bounding and convex lower bounding functions obtained from the McCormick relaxation approach is always within a constant of the difference between the concave and convex envelopes. These results, along with numerical examples we provide, give insight into how to construct strong relaxations of multilinear functions.  相似文献   

19.
We consider the integration of two-dimensional, piecewise constant functions with respect to copulas. By drawing a connection to linear assignment problems, we can give optimal upper and lower bounds for such integrals and construct the copulas for which these bounds are attained. Furthermore, we show how our approach can be extended in order to approximate extremal values in very general situations. Finally, we apply our approximation technique to problems in financial mathematics and uniform distribution theory, such as the model-independent pricing of first-to-default swaps.  相似文献   

20.
In this paper, we propose a new method to compute lower bounds on the optimal objective value of a stochastic program and show how this method can be used to construct separable approximations to the recourse functions. We show that our method yields tighter lower bounds than Jensen’s lower bound and it requires a reasonable amount of computational effort even for large problems. The fundamental idea behind our method is to relax certain constraints by associating dual multipliers with them. This yields a smaller stochastic program that is easier to solve. We particularly focus on the special case where we relax all but one of the constraints. In this case, the recourse functions of the smaller stochastic program are one dimensional functions. We use these one dimensional recourse functions to construct separable approximations to the original recourse functions. Computational experiments indicate that our lower bounds can significantly improve Jensen’s lower bound and our recourse function approximations can provide good solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号