首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Let Gn,m be the family of graphs with n vertices and m edges, when n and m are previously given. It is well-known that there is a subset of Gn,m constituted by graphs G such that the vertex connectivity, the edge connectivity, and the minimum degree are all equal. In this paper, S(ab)-classes of connected (ab)-linear graphs with n vertices and m edges are described, where m is given as a function of a,bN/2. Some of them have extremal graphs for which the equalities above are extended to algebraic connectivity. These graphs are Laplacian integral although they are not threshold graphs. However, we do build threshold graphs in S(ab).  相似文献   

2.
The m-th root of the diagonal of the upper triangular matrix Rm in the QR decomposition of AXmB = QmRm converges and the limit is given by the moduli of the eigenvalues of X with some ordering, where A,B,XCn×n are nonsingular. The asymptotic behavior of the strictly upper triangular part of Rm is discussed. Some computational experiments are discussed.  相似文献   

3.
In this paper we study the class of square matrices A such that AA − AA is nonsingular, where A stands for the Moore-Penrose inverse of A. Among several characterizations we prove that for a matrix A of order n, the difference AA − AA is nonsingular if and only if R(A)R(A)=Cn,1, where R(·) denotes the range space. Also we study matrices A such that R(A)=R(A).  相似文献   

4.
Let R be a real closed field and n?2. We prove that: (1) for every finite subset F of Rn, the semialgebraic set Rn?F is a polynomial image of Rn; and (2) for any independent linear forms l1,…,lr of Rn, the semialgebraic set {l1>0,…,lr>0}⊂Rn is a polynomial image of Rn.  相似文献   

5.
The generating system of the differential algebra for invariant differential polynomials with two parametric curves is obtained. Conditions for the equivalence of two parametric curves families are given. We are also proved that the generating differential invariants of two parametric curves are independent. Finally, we reduce the SL(nR)-equivalent problem for ruled surfaces to that of parametric curves.  相似文献   

6.
A consecutive(rs)-out-of-(mn):F lattice system which is defined as a two-dimensional version of a consecutive k-out-of-n:F system is used as a reliability evaluation model for a sensor system, an X-ray diagnostic system, a pattern search system, etc. This system consists of m × n components arranged like an (mn) matrix and fails iff the system has an (rs) submatrix that contains all failed components. In this paper we deal a combined model of a k-out-of-mn:F and a consecutive (rs)-out-of-(mn):F lattice system. Namely, the system has one more condition of system down, that is the total number of failed components, in addition to that of a consecutive (rs)-out-of-(mn):F lattice system. We present a method to obtain reliability of the system. The proposed method obtains the reliability by using a combinatorial equation that does not depend on the system size. Some numerical examples are presented to show the relationship between component reliability and system reliability.  相似文献   

7.
Let v be a valuation of a field K, Gv its value group and kv its residue field. Let w be an extension of v to K(x1, … , xn). w is called a residual transcendental extension of v if kw/kv is a transcendental extension. In this study a residual transcendental extension w of v to K(x1, … , xn) such that transdegkw/kv = n is defined and some considerations related with this valuation are given.  相似文献   

8.
Saadani et al. [N.E.H. Saadani, P. Baptiste, M. Moalla, The simple F2∥Cmax with forbidden tasks in first or last position: A problem more complex that it seems, European Journal of Operational Research 161 (2005) 21–31] studied the classical n-job flow shop scheduling problem F2∥Cmax with an additional constraint that some jobs cannot be placed in the first or last position. There exists an optimal job sequence for this problem, in which at most one job in the first or last position is deferred from its position in Johnson’s [S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval Research Logistics Quarterly 1 (1954) 61–68] permutation. The problem was solved in O(n2) time by enumerating all candidate job sequences. We suggest a simple O(n) algorithm for this problem provided that Johnson’s permutation is given. Since Johnson’s permutation can be obtained in O(n log n) time, the problem in Saadani et al. (2005) can be solved in O(n log n) time as well.  相似文献   

9.
Let ∥ · ∥ be the Frobenius norm of matrices. We consider (I) the set SE of symmetric and generalized centro-symmetric real n × n matrices Rn with some given eigenpairs (λjqj) (j = 1, 2, … , m) and (II) the element in SE which minimizes for a given real matrix R. Necessary and sufficient conditions for SE to be nonempty are presented. A general form of elements in SE is given and an explicit expression of the minimizer is derived. Finally, a numerical example is reported.  相似文献   

10.
The conjecture posed by Aujla and Silva [J.S. Aujla, F.C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003) 217-233] is proved. It is shown that for any m-tuple of positive-semidefinite n × n complex matrices Aj and for any non-negative convex function f on [0, ∞) with f(0) = 0 the inequality ?f(A1) + f(A2) + ? + f(Am)? ? ? f(A1 + A2 + ? + Am)? holds for any unitarily invariant norm ? · ?. It is also proved that ?f(A1) + f(A2) + ? + f(Am)? ? f(?A1 + A2 + ? + Am?), where f is a non-negative concave function on [0, ∞) and ? · ? is normalized.  相似文献   

11.
Let R ∈ Cn×n be a nontrivial involution, i.e., R2 = I and R ≠ ±I. A matrix A ∈ Cn×n is called R-skew symmetric if RAR = −A. The least-squares solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are firstly derived, then the solvability conditions and the solutions of the matrix inverse problem for R-skew symmetric matrices with R∗ = R are given. The solutions of the corresponding optimal approximation problem with R∗ = R for R-skew symmetric matrices are also derived. At last an algorithm for the optimal approximation problem is given. It can be seen that we extend our previous results [G.X. Huang, F. Yin, Matrix inverse problem and its optimal approximation problem for R-symmetric matrices, Appl. Math. Comput. 189 (2007) 482-489] and the results proposed by Zhou et al. [F.Z. Zhou, L. Zhang, X.Y. Hu, Least-square solutions for inverse problem of centrosymmetric matrices, Comput. Math. Appl. 45 (2003) 1581-1589].  相似文献   

12.
Until now the concept of a Soules basis matrix of sign patternN consisted of an orthogonal matrix RRn,n, generated in a certain way from a positive n-vector, which has the property that for any diagonal matrix Λ = diag(λ1, … , λn), with λ1 ? ? ? λn ? 0, the symmetric matrix A = RΛRT has nonnegative entries only. In the present paper we introduce the notion of a pair of double Soules basis matrices of sign patternN which is a pair of matrices (PQ), each in Rn,n, which are not necessarily orthogonal and which are generated in a certain way from two positive vectors, but such that PQT = I and such that for any of the aforementioned diagonal matrices Λ, the matrix A = PΛQT (also) has nonnegative entries only. We investigate the interesting properties which such matrices A have.As a preamble to the above investigation we show that the iterates, , generated in the course of the QR-algorithm when it is applied to A = RΛRT, where R is a Soules basis matrix of sign pattern N, are again symmetric matrices generated by the Soules basis matrices Rk of sign pattern N which are themselves modified as the algorithm progresses.Our work here extends earlier works by Soules and Elsner et al.  相似文献   

13.
The population haplotype inference problem based on the pure parsimony criterion (HIPP) infers an m × n genotype matrix for a population by a 2m × n haplotype matrix with the minimum number of distinct haplotypes. Previous integer programming based HIPP solution methods are time-consuming, and their practical effectiveness remains unevaluated. On the other hand, previous heuristic HIPP algorithms are efficient, but their theoretical effectiveness in terms of optimality gaps has not been evaluated, either. We propose two new heuristic HIPP algorithms (MGP and GHI) and conduct more complete computational experiments. In particular, MGP exploits the compatible relations among genotypes to solve a reduced integer linear programming problem so that a solution of good quality can be obtained very quickly; GHI exploits a weight mechanism to selects better candidate haplotypes in a greedy fashion. The computational results show that our proposed algorithms are efficient and effective, especially for solving cases with larger recombination rates.  相似文献   

14.
Mittal, Rhoades [5], [6], [7] and [8] and Mittal et al. [9] and [10] have initiated a study of error estimates En(f) through trigonometric-Fourier approximation (tfa) for the situations in which the summability matrix T does not have monotone rows. In this paper we continue the work. Here we extend two theorems of Leindler [4], where he has weakened the conditions on {pn} given by Chandra [2], to more general classes of triangular matrix methods. Our Theorem also partially generalizes Theorem 4 of Mittal et al. [11] by dropping the monotonicity on the elements of matrix rows, which in turn generalize the results of Quade [15].  相似文献   

15.
We consider a free boundary problem modeling tumor growth in fluid-like tissue. The model equations include a diffusion equation for the nutrient concentration, and the Stokes equation with a source which represents the proliferation of tumor cells. The proliferation rate μ and the cell-to-cell adhesiveness γ which keeps the tumor intact are two parameters which characterize the “aggressiveness” of the tumor. For any positive radius R there exists a unique radially symmetric stationary solution with radius r=R. For a sequence μ/γ=Mn(R) there exist symmetry-breaking bifurcation branches of solutions with free boundary r=R+εYn,0(θ)+O(ε2) (n even ?2) for small |ε|, where Yn,0 is the spherical harmonic of mode (n,0). Furthermore, the smallest Mn(R), say Mn(R), is such that n=n(R)→∞ as R→∞. In this paper we prove that the radially symmetric stationary solution with R=RS is linearly stable if μ/γ<N(RS,γ) and linearly unstable if μ/γ>N(RS,γ), where N(RS,γ)?Mn(RS), and we prove that strict inequality holds if γ is small or if γ is large. The biological implications of these results are discussed at the end of the paper.  相似文献   

16.
Denote by An the set of square (0, 1) matrices of order n. The set An, n ? 8, is partitioned into row/column permutation equivalence classes enabling derivation of various facts by simple counting. For example, the number of regular (0, 1) matrices of order 8 is 10160459763342013440. Let Dn, Sn denote the set of absolute determinant values and Smith normal forms of matrices from An. Denote by an the smallest integer not in Dn. The sets D9 and S9 are obtained; especially, a9 = 103. The lower bounds for an, 10 ? n ? 19 (exceeding the known lower bound an ? 2fn − 1, where fn is nth Fibonacci number) are obtained. Row/permutation equivalence classes of An correspond to bipartite graphs with n black and n white vertices, and so the other applications of the classification are possible.  相似文献   

17.
Let a, n ? 1 be integers and S = {x1, … , xn} be a set of n distinct positive integers. The matrix having the ath power (xixj)a of the greatest common divisor of xi and xj as its i, j-entry is called ath power greatest common divisor (GCD) matrix defined on S, denoted by (Sa). Similarly we can define the ath power LCM matrix [Sa]. We say that the set S consists of finitely many quasi-coprime divisor chains if we can partition S as S = S1 ∪ ? ∪ Sk, where k ? 1 is an integer and all Si (1 ? i ? k) are divisor chains such that (max(Si), max(Sj)) = gcd(S) for 1 ? i ≠ j ? k. In this paper, we first obtain formulae of determinants of power GCD matrices (Sa) and power LCM matrices [Sa] on the set S consisting of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. Using these results, we then show that det(Sa)∣det(Sb), det[Sa]∣det[Sb] and det(Sa)∣det[Sb] if ab and S consists of finitely many quasi-coprime divisor chains with gcd(S) ∈ S. But such factorizations fail to be true if such divisor chains are not quasi-coprime.  相似文献   

18.
Let X be a locally finite simplicial complex of dimension n, n? 5, equipped with a k-fold end structure [4] and consider a piecewise linear (n + 1)-dimensional manifold M that is proper homotopy equivalent to X × R by F:MX × R, where R is the set of real numbers. The question arises as to whether or not the manifold M can be split, i.e., written as M = N × R where N is a n-manifold and where there is a proper homotopy between F and (p1 ° F0) × id:N × RX × R, preserving the natural (k+1)-fold end structure, where F0 is F|N and p1 is the projection X × RX. Of particular significance is the fact that X is noncompact. When the construction of such splittings is attempted, algebraic obstructions arise, which vanish if and only if the construction can be completed. This paper develops such an obstruction theory by utilizing methods of L.C. Siebenmann and the k-fold end structures of F. Waldhausen.  相似文献   

19.
Network robustness issues are crucial in a variety of application areas. In many situations, one of the key robustness requirements is the connectivity between each pair of nodes through a path that is short enough, which makes a network cluster more robust with respect to potential network component disruptions. A k-club, which by definition is a subgraph of a diameter of at most k, is a structure that addresses this requirement (assuming that k is small enough with respect to the size of the original network). We develop a new compact linear 0-1 programming formulation for finding maximum k-clubs that has substantially fewer entities compared to the previously known formulation (O(kn2) instead of O(nk+1), which is important in the general case of k > 2) and is rather tight despite its compactness. Moreover, we introduce a new related concept referred to as an R-robust k-club (or, (kR)-club), which naturally arises from the developed k-club formulations and extends the standard definition of a k-club by explicitly requiring that there must be at least R distinct paths of length at most k between all pairs of nodes. A compact formulation for the maximum R-robust k-club problem is also developed, and error and attack tolerance properties of the important special case of R-robust 2-clubs are investigated. Computational results are presented for multiple types of random graph instances.  相似文献   

20.
We consider the k-Hyperplane Clustering problem where, given a set of m   points in RnRn, we have to partition the set into k subsets (clusters) and determine a hyperplane for each of them, so as to minimize the sum of the squares of the Euclidean distances between the points and the hyperplane of the corresponding clusters. We give a nonconvex mixed-integer quadratically constrained quadratic programming formulation for the problem. Since even very small-size instances are challenging for state-of-the-art spatial branch-and-bound solvers like Couenne, we propose a heuristic in which many “critical” points are reassigned at each iteration. Such points, which are likely to be ill-assigned in the current solution, are identified using a distance-based criterion and their number is progressively decreased to zero. Our algorithm outperforms the best available one proposed by Bradley and Mangasarian on a set of real-world and structured randomly generated instances. For the largest instances, we obtain an average improvement in the solution quality of 54%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号