首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dual l p-norm perturbation approach is introduced for solving convex quadratic programming problems. The feasible region of the Lagrangian dual program is approximated by a proper subset that is defined by a single smooth convex constraint involving the l p-norm of a vector measure of constraint violation. It is shown that the perturbed dual program becomes the dual program as p and, under some standard conditions, the optimal solution of the perturbed dual program converges to a dual optimal solution. A closed-form formula that converts an optimal solution of the perturbed dual program into a feasible solution of the primal convex quadratic program is also provided. Such primal feasible solutions converge to an optimal primal solution as p. The proposed approach generalizes the previously proposed primal perturbation approach with an entropic barrier function. Its theory specializes easily for linear programming.  相似文献   

2.
We introduce new augmented Lagrangian algorithms for linear programming which provide faster global convergence rates than the augmented algorithm of Polyak and Treti'akov. Our algorithm shares the same properties as the Polyak-Treti'akov algorithm in that it terminates in finitely many iterations and obtains both primal and dual optimal solutions. We present an implementable version of the algorithm which requires only approximate minimization at each iteration. We provide a global convergence rate for this version of the algorithm and show that the primal and dual points generated by the algorithm converge to the primal and dual optimal set, respectively.  相似文献   

3.
We consider the inclusion of commitment of thermal generation units in the optimal management of the Brazilian power system. By means of Lagrangian relaxation we decompose the problem and obtain a nondifferentiable dual function that is separable. We solve the dual problem with a bundle method. Our purpose is twofold: first, bundle methods are the methods of choice in nonsmooth optimization when it comes to solve large-scale problems with high precision. Second, they give good starting points for recovering primal solutions. We use an inexact augmented Lagrangian technique to find a near-optimal primal feasible solution. We assess our approach with numerical results.  相似文献   

4.
We consider in this paper the Lagrangian dual method for solving general integer programming. New properties of Lagrangian duality are derived by a means of perturbation analysis. In particular, a necessary and sufficient condition for a primal optimal solution to be generated by the Lagrangian relaxation is obtained. The solution properties of Lagrangian relaxation problem are studied systematically. To overcome the difficulties caused by duality gap between the primal problem and the dual problem, we introduce an equivalent reformulation for the primal problem via applying a pth power to the constraints. We prove that this reformulation possesses an asymptotic strong duality property. Primal feasibility and primal optimality of the Lagrangian relaxation problems can be achieved in this reformulation when the parameter p is larger than a threshold value, thus ensuring the existence of an optimal primal-dual pair. We further show that duality gap for this partial pth power reformulation is a strictly decreasing function of p in the case of a single constraint. Dedicated to Professor Alex Rubinov on the occasion of his 65th birthday. Research supported by the Research Grants Council of Hong Kong under Grant CUHK 4214/01E, and the National Natural Science Foundation of China under Grants 79970107 and 10571116.  相似文献   

5.
《Optimization》2012,61(8):1139-1151
Quadratically constrained quadratic programming is an important class of optimization problems. We consider the case with one quadratic constraint. Since both the objective function and its constraint can be neither convex nor concave, it is also known as the ‘generalized trust region subproblem.’ The theory and algorithms for this problem have been well studied under the Slater condition. In this article, we analyse the duality property between the primal problem and its Lagrangian dual problem, and discuss the attainability of the optimal primal solution without the Slater condition. The relations between the Lagrangian dual and semidefinite programming dual is also given.  相似文献   

6.
We apply a modified subgradient algorithm (MSG) for solving the dual of a nonlinear and nonconvex optimization problem. The dual scheme we consider uses the sharp augmented Lagrangian. A desirable feature of this method is primal convergence, which means that every accumulation point of a primal sequence (which is automatically generated during the process), is a primal solution. This feature is not true in general for available variants of MSG. We propose here two new variants of MSG which enjoy both primal and dual convergence, as long as the dual optimal set is nonempty. These variants have a very simple choice for the stepsizes. Moreover, we also establish primal convergence when the dual optimal set is empty. Finally, our second variant of MSG converges in a finite number of steps.  相似文献   

7.
We consider the continuous trajectories of the vector field induced by the primal affine scaling algorithm as applied to linear programming problems in standard form. By characterizing these trajectories as solutions of certain parametrized logarithmic barrier families of problems, we show that these trajectories tend to an optimal solution which in general depends on the starting point. By considering the trajectories that arise from the Lagrangian multipliers of the above mentioned logarithmic barrier families of problems, we show that the trajectories of the dual estimates associated with the affine scaling trajectories converge to the so called centered optimal solution of the dual problem. We also present results related to asymptotic direction of the affine scaling trajectories. We briefly discuss how to apply our results to linear programs formulated in formats different from the standard form. Finally, we extend the results to the primal-dual affine scaling algorithm.  相似文献   

8.
A new concept of duality is proposed for multiobjective linear programs. It is based on a set expansion process for the computation of optimal solutions without scalarization. The duality gap qualifications are investigated; the primal–dual balance set and level set equations are derived. It is demonstrated that the nonscalarized dual problem presents a cluster of optimal dual vectors that corresponds to a unique optimal primal vector. Comparisons are made with linear utility, minmax and minmin scalarizations. Connections to Pareto optimality are studied and relations to sensitivity and parametric programming are discussed. The ideas are illustrated by examples.  相似文献   

9.
We study the multicommodity network flow problem with fixed costs on paths, with specific application to the empty freight car distribution process of a rail operator. The classification costs for sending a group of cars do not depend on the number of cars in the group, as long as the group is kept together as one unit. Arcs correspond to trains, so we have capacity restrictions on arcs but fixed costs on the paths corresponding to routes for groups of cars. As solution method, we propose a Lagrangian based heuristic using dual subgradient search and primal heuristics based on path information of the Lagrangian subproblem solutions. The method illustrates several ways of exploiting the specific structures of the problem. Computational tests indicate that the method is able to generate fairly good primal feasible solutions and lower bounds on the optimal objective function value.  相似文献   

10.
Although the Lagrangian method is a powerful dual search approach in integer programming, it often fails to identify an optimal solution of the primal problem. The p-th power Lagrangian method developed in this paper offers a success guarantee for the dual search in generating an optimal solution of the primal integer programming problem in an equivalent setting via two key transformations. One other prominent feature of the p-th power Lagrangian method is that the dual search only involves a one-dimensional search within [0,1]. Some potential applications of the method as well as the issue of its implementation are discussed.  相似文献   

11.
Consider the utilization of a Lagrangian dual method which is convergent for consistent convex optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual. We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function. We present convergence results for a conditional \(\varepsilon \)-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.  相似文献   

12.
We study convergence properties of a modified subgradient algorithm, applied to the dual problem defined by the sharp augmented Lagrangian. The primal problem we consider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and dual convergence results, as well as a condition for existence of a dual solution. Using a practical selection of the step-size parameters, we demonstrate the algorithm and its advantages on test problems, including an integer programming and an optimal control problem. *Partially Supported by 2003 UniSA ITEE Small Research Grant Ero2. Supported by CAPES, Brazil, Grant No. 0664-02/2, during her visit to the School of Mathematics and Statistics, UniSA.  相似文献   

13.
pth Power Lagrangian Method for Integer Programming   总被引:1,自引:0,他引:1  
When does there exist an optimal generating Lagrangian multiplier vector (that generates an optimal solution of an integer programming problem in a Lagrangian relaxation formulation), and in cases of nonexistence, can we produce the existence in some other equivalent representation space? Under what conditions does there exist an optimal primal-dual pair in integer programming? This paper considers both questions. A theoretical characterization of the perturbation function in integer programming yields a new insight on the existence of an optimal generating Lagrangian multiplier vector, the existence of an optimal primal-dual pair, and the duality gap. The proposed pth power Lagrangian method convexifies the perturbation function and guarantees the existence of an optimal generating Lagrangian multiplier vector. A condition for the existence of an optimal primal-dual pair is given for the Lagrangian relaxation method to be successful in identifying an optimal solution of the primal problem via the maximization of the Lagrangian dual. The existence of an optimal primal-dual pair is assured for cases with a single Lagrangian constraint, while adopting the pth power Lagrangian method. This paper then shows that an integer programming problem with multiple constraints can be always converted into an equivalent form with a single surrogate constraint. Therefore, success of a dual search is guaranteed for a general class of finite integer programming problems with a prominent feature of a one-dimensional dual search.  相似文献   

14.
A Modified Barrier-Augmented Lagrangian Method for Constrained Minimization   总被引:4,自引:0,他引:4  
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modified barrier term and equalities with an augmented Lagrangian term. The MBAL method alternatively minimizes the MBAL function in the primal space and updates the Lagrange multipliers. For a large enough fixed barrier-penalty parameter the MBAL method is shown to converge Q-linearly under the standard second-order optimality conditions. Q-superlinear convergence can be achieved by increasing the barrier-penalty parameter after each Lagrange multiplier update. We consider a dual problem that is based on the MBAL function. We prove a basic duality theorem for it and show that it has several important properties that fail to hold for the dual based on the classical Lagrangian.  相似文献   

15.
In practice, solving realistically sized combinatorial optimization problems to optimality is often too time-consuming to be affordable; therefore, heuristics are typically implemented within most applications software. A specific category of heuristics has attracted considerable attention, namely local search methods. Most local search methods are primal in nature; that is, they start the search with a feasible solution and explore the feasible space for better feasible solutions. In this research, we propose a dual local search method and customize it to solve the traveling salesman problem (TSP); that is, a search method that starts with an infeasible solution, explores the dual space—each time reducing infeasibility, and lands in the primal space to deliver a feasible solution. The proposed design aims to replicate the designs of optimal solution methodologies in a heuristic way. To be more specific, we solve a combinatorial relaxation of a TSP formulation, design a neighborhood structure to repair such an infeasible starting solution, and improve components of intermediate dual solutions locally. Sample-based evidence along with statistically significant t-tests support the superiority of this dual design compared to its primal design counterpart.  相似文献   

16.
In this paper, we consider a dynamic Lagrangian dual optimization procedure for solving mixed-integer 0–1 linear programming problems. Similarly to delayed relax-and-cut approaches, the procedure dynamically appends valid inequalities to the linear programming relaxation as induced by the Reformulation-Linearization Technique (RLT). A Lagrangian dual algorithm that is augmented with a primal solution recovery scheme is applied implicitly to a full or partial first-level RLT relaxation, where RLT constraints that are currently being violated by the primal estimate are dynamically generated within the Lagrangian dual problem, thus controlling the size of the dual space while effectively capturing the strength of the RLT-enhanced relaxation. We present a preliminary computational study to demonstrate the efficacy of this approach.  相似文献   

17.
We study subgradient methods for computing the saddle points of a convex-concave function. Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much attention in the design of decentralized network protocols. We first present a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rate estimates on the constructed solutions. We then focus on Lagrangian duality, where we consider a convex primal optimization problem and its Lagrangian dual problem, and generate approximate primal-dual optimal solutions as approximate saddle points of the Lagrangian function. We present a variation of our subgradient method under the Slater constraint qualification and provide stronger estimates on the convergence rate of the generated primal sequences. In particular, we provide bounds on the amount of feasibility violation and on the primal objective function values at the approximate solutions. Our algorithm is particularly well-suited for problems where the subgradient of the dual function cannot be evaluated easily (equivalently, the minimum of the Lagrangian function at a dual solution cannot be computed efficiently), thus impeding the use of dual subgradient methods.  相似文献   

18.
We consider a primal optimization problem in a reflexive Banach space and a duality scheme via generalized augmented Lagrangians. For solving the dual problem (in a Hilbert space), we introduce and analyze a new parameterized Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty. Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the stepsize gives rise to a variant of IMSg which has finite termination.  相似文献   

19.
This paper presents a new generalization of the graph multicoloring problem. We propose a Branch-and-Cut algorithm based on a new integer programming formulation. The cuts used are valid inequalities that we could identify to the polytope associated with the model. The Branch-and-Cut system includes separation heuristics for the valid inequalities, specific initial and primal heuristics, branching and pruning rules. We report on computational experience with random instances.  相似文献   

20.
In this paper, we investigate the behavior of the primal affine scaling method with unit steps when applied to the case where b=0 and c>0. We prove that the method is globally convergent and that the dual iterates converge to the analytic center of the dual feasible region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号