首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing highly active and durable electrocatalysts for the oxygen reduction reaction (ORR) is crucial to large-scale commercialization of fuel cells and metal-air batteries. Here we report a facile approach for the synthesis of nitrogen and oxygen dual-doped mesoporous layer-structured carbon electrocatalyst embedded with graphitic carbon coated cobalt nanoparticles by direct pyrolysis of a layer-structured metal-organic framework. The electrocatalyst prepared at 800℃ exhibits comparable ORR performance to Pt/C catalysts but possesses superior stability to Pt/C catalysts. This synthetic approach provides new prospects in developing sustainable carbon-based electrocatalysts for electrochemical energy conversion devices.  相似文献   

2.
We synthesized a new class of O2 electrocatalysts with a high activity and very low noble metal content. They consist of Pt monolayers deposited on the surfaces of carbon-supported nonnoble metal-noble metal core-shell nanoparticles. These core-shell nanoparticles were formed by segregating the atoms of the noble metal on to the nanoparticles' surfaces at elevated temperatures. A Pt monolayer was deposited by galvanic displacement of a Cu monolayer deposited at underpotentials. The mass activity of all the three Pt monolayer electrocatalysts investigated, viz., Pt/Au/Ni, Pt/Pd/Co, and Pt/Pt/Co, is more than order of magnitude higher than that of a state-of-the-art commercial Pt/C electrocatalyst. Geometric effects in the Pt monolayer and the effects of PtOH coverage, revealed by electrochemical data, X-ray diffraction, and X-ray absorption spectroscopy data, appear to be the source of the enhanced catalytic activity. Our results demonstrated that high-activity electrocatalysts can be devised that contain only a fractional amount of Pt and a very small amount of another noble metal.  相似文献   

3.
氧还原反应是决定燃料电池、金属-空气电池等多种新型清洁能源存储与转化技术之性能与应用的关键反应. 铂及其合金是目前催化活性最好的氧还原反应催化剂,但其高昂的成本限制了规模化应用. 在小尺寸效应作用下,微纳米结构催化剂颗粒在电极制备与电化学反应过程中的团聚限制了催化剂本征催化活性的充分发挥. 本文基于喷雾热解技术,发展了一种基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的高活性、抗团聚非贵金属氧还原反应催化剂. 此结构中,金属有机骨架化合物ZIF-67衍生的钴/氮掺杂多孔碳纳米结构是催化氧还原反应的活性中心,包覆其外的三维石墨烯笼不仅可在钴/氮掺杂碳纳米结构之间构建连续的三维载流子传导网络,且可高效抑制其在催化剂制备与电化学反应过程中的团聚与活性损失. 在碱性电解液中,此类非贵金属催化剂表现出可与铂基催化剂媲美的氧还原反应活性和优异的稳定性.  相似文献   

4.
Pd-Fe nanoparticles as electrocatalysts for oxygen reduction   总被引:1,自引:0,他引:1  
We have synthesized new electrocatalysts for the O2 reduction reaction that does not contain Pt. They consist of carbon-supported Pd-Fe alloys and have very high oxygen reduction. The nanoparticles with a Pd:Fe molar ratio of 3:1 (Pd3Fe/C) show a higher mass activity than that of commercial Pt/C. The surface-specific activity of the Pd-Fe alloys is related to the Pd-Pd bond distance: the shorter the bond distance, the higher the activity. This new class of electrocatalysts promises to alleviate some major problems of existing fuel cell technology by simultaneously decreasing materials cost and enhancing performance.  相似文献   

5.
Metal-free electrocatalysts for oxygen reduction reaction (ORR) are key to the development of efficient, durable, and low-cost alternatives to noble-metal-based electrocatalysts in fuel cell cathodes. In recent years, many efforts are directed to the metal-free catalyst based on heteroatom-doped graphene. In this work, we demonstrate that the graphene surface can be converted into the catalyst for the oxygen reduction by chemical functionalization. In this context, we first synthesized malononitrile-functionalized graphene oxide. Amidoximation of nitrile group and reduction in graphene oxide were then carried out by hydroxylamine in one step. The electrochemical behavior of functionalized graphene-modified electrode for the reduction in oxygen was studied. The results showed that the electrocatalyst fabricated by this method exhibited striking catalytic activities in alkaline solution. In alkaline solution, this catalyst showed a competitive activity to the commercial Pt catalyst via four-electron transfer pathway with better ORR selectivity and stability. In addition, this metal-free electrocatalyst exhibited tolerance to methanol crossover effect. Based on its outstanding performance, this functionalized graphene electrocatalyst showed the promising prospect of a metal-free catalyst for fuel cell with much lower cost than currently used Pt/C catalyst.  相似文献   

6.
By coupling a Pt‐catalyzed fluorogenic reaction with the Pt‐electrocatalyzed hydrogen‐oxidation reaction (HOR), we combine single‐molecule fluorescence microscopy with traditional electrochemical methods to study the real‐time deactivation kinetics of a Pt/C electrocatalyst at single‐particle level during electrocatalytic hydrogen‐oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis‐induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single‐particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells.  相似文献   

7.
Carbide‐based electrocatalysts are superior to traditional carbon‐based electrocatalysts, such as the commercial Pt/C electrocatalysts, in terms of their mass activity and stability. Herein, we report a general approach for the preparation of a nanocomposite electrocatalyst of platinum and vanadium carbide nanoparticles that are loaded onto graphitized carbon. The nanocomposite, which was prepared in a localized and controlled fashion by using an ion‐exchange process, was an effective electrocatalyst for the oxygen‐reduction reaction (ORR). Both the stability and the durability of the Pt‐VC/GC nanocomposite catalyst could be enhanced compared with the state‐of‐the‐art Pt/C. This approach can be extended to the synthesis of other metal‐carbide‐based nanocatalysts. Moreover, this straightforward synthesis of high‐performance composite nanocatalysts can be scaled up to meet the requirements for mass production.  相似文献   

8.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

9.
Much effort has gone into generating polyhedral noble metal nanostructures because of their superior electrocatalytic activities for fuel cells. Herein, we report uniform, high-yield icosahedral silver and gold nanoparticles by using a facile one-pot, seedless, water-based approach that incorporates polyvinyl pyrrolidone and ammonia. Electrocatalysis of the oxygen-reduction reaction was carried out in alkaline media to evaluate the performance of the icosahedral nanoparticles. They showed excellent stability and much higher electrocatalytic activity than the spherelike nanoparticles; they display a positive shift in reduction peak potential for O(2) of 0.14 and 0.05 V, while the reduction peak currents of the silver and gold icosahedra are 1.5- and 1.6-fold, respectively, better than the spherelike nanoparticles. More importantly, the icosahedral nanoparticles display electrocatalytic activities comparable with commercial Pt/C electrocatalysts. The facile preparation of icosahedral silver and gold nanoparticles and their superior performance in the oxygen reduction reaction render them attractive replacements for Pt as cathode electrocatalysts in alkaline fuel cells.  相似文献   

10.
Oxygen reduction reaction (ORR) is the cornerstone reaction of many renewable energy technologies such as fuel cells and rechargeable metal-air batteries.The Pt-based electrocatalysts exhibit the highest activity toward ORR, but their large implementation is greatly prohibiting by unaffordable cost and inferior durability.During electrode manufacturing and electrochemical reaction, severe aggregation of catalyst nanoparticles induced by size effect further limits the operational performance of electrocatalysts.We report a new strategy for fabrication of active and aggregation-resistant ORR electrocatalyst by caging metal-organic frameworks derived Co-N-C nanocomposites in permeable and porous 3D graphene cages via sprayed drying the mixed colloids of ZIF-67 nanoparticles and graphene oxide, followed by annealing.The 3D graphene cages around Co-N-C nanocomposites not only provide a continuous conductive network for charge transfer, but also prevent the active phase from aggregation during electrode manufacturing and electrochemical reactions.When evaluated as an ORR electrocatalyst, the material exhibited comparable activity but superior stability to commercial Pt/C catalyst in an alkaline electrolyte. © 2018 Chinese Chemical Society. All rights reserved.  相似文献   

11.
Platinum (Pt) nanoparticles supported on zirconia–carbon black nanocomposites (Zr–C), which annealed at different temperatures, used as Pt/Zr–C electrocatalysts for methanol oxidation reaction (MOR) are prepared and characterized in this study. Transmission electron microscope images and X-ray diffraction analysis showed that the diameters of Pt nanoparticles are around 3–4 nm. Electrocatalytic MOR performances of these Pt/Zr–C electrocatalysts are investigated by cyclic voltammetry, CO-stripping voltammetry, and chronoamperometry. All the Pt/Zr–C electrocatalysts synthesized in this study exhibited higher MOR efficiency than that of the commercial E-TEK Pt/C electrocatalyst, and the electrocatalyst using Zr–C support annealed at 300 °C, achieving the highest MOR efficiency among all the electrocatalysts.  相似文献   

12.
以100 nm的Au粒子为核,抗坏血酸为还原剂,H2PtCl6·6H2O为前驱体,合成了Pt包Au核壳结构纳米粒子( Au@ Pt)及其修饰的玻碳(GC)电极(Au@ Pt/GC).采用旋转圆盘电极等常规电化学方法,比较了Au@ Pt/GC和商用碳载铂(Pt/C)修饰的玻碳电极(Pt/C/GC)催化O2还原反应活性及耐甲醇性能,发现Au@ Pt纳米粒子在铂用量很低的情况下,其催化O2还原反应活性仍与商用Pt/C相当,而且还具有优良的耐甲醇性能;其催化O2还原反应机理按O2直接还原成H2O的四电子历程进行.  相似文献   

13.
燃料电池具有较高的能量密度和发电效率,以清洁能源为原料,零污染排放,是一种具有发展前景的能量储存和转化装置.阴极氧还原反应(ORR)在燃料电池中起着关键作用.ORR广泛采用贵金属铂基催化剂,但是它们价格昂贵,电子动力学转移速率慢,碱性条件下易团聚,这些亟需解决的问题阻碍了燃料电池商业化进程.近期,一些非贵金属催化剂被广泛研究,例如氮掺杂碳材料、Fe/N/C和Co/N/C材料等,它们有可能在未来替代铂基催化剂.我们的目标是合成新型高催化活性的Co/N/C及其衍生非贵金属材料,用于ORR催化反应.由于石墨烯具有独特的形貌、较大的比表面积和良好的导电性,其表面含有功能化的官能团,所以我们选择石墨烯作为碳载体.首先,用改性休克尔方法合成了氧化石墨烯(GO),为了提高其催化活性,采用聚吡咯作为氮源对其进行了氮掺杂,制备了聚吡咯/氧化石墨烯(Ppy/GO).通过ORR催化性能测试发现,GO对ORR具有一定的催化活性,它的起始电位和阴极电流电位分别为–0.31 V vs SCE和–0.38 V vs SCE;Ppy/GO的起始电位和阴极电流电位分别为–0.20 V vs SCE和–0.38 V vs SCE,氮掺杂对GO的催化活性有所提高.采用水热法沉积氧化钴合成了Co3O4/聚吡咯/氧化石墨烯(Co3O4/Ppy/GO).其形貌为Co3O4分散在氮掺杂GO表面.在KOH电解质(0.1 mol/L)中测试,Co3O4/Ppy/GO的起始电位和阴极电流电位分别为–0.20 V和–0.38 V vs SCE.经过800℃高温煅烧处理后,Co3O4/Ppy/GO-800的催化活性明显提高,起始电位和阴极电流电位分别达到–0.10 V和–0.18 V vs SCE.ORR电子转移数为3.4,接近于4电子反应途径.Co3O4/Ppy/GO对ORR的催化活性及4电子催化选择性较高,可能是由于纳米形态的Co3O4和Ppy/GO之间具有较强的表面作用力,聚吡咯掺杂的氧化石墨烯具有较强的电子储存及释放能力.综上,我们通过水热法制备了钴、氮共掺杂的GO,并研究了其对ORR的催化活性和电子转移选择性.结果表明Co3O4/Ppy/GO是一种高效的非贵金属电催化剂,在碱性电解质中具有很高的ORR催化活性,在燃料电池阴极催化剂方面很有前景.  相似文献   

14.
Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions.  相似文献   

15.
The development of Pt-based electrocatalysts with high Pt utilization efficiency toward the hydrogen evolution reaction (HER) is of great significance for the future sustainable hydrogen economy. For rational design of high-performance HER electrocatalyst, the simultaneous consideration of both thermodynamic and kinetic aspects remains greatly challenging. Herein, a simple template-derived strategy is demonstrated for the in situ growth of ultrafine Pt nanoparticles onto Co3O4 nanosheet-assembled microflowers (abbreviated as Pt/Co3O4 microflowers hereafter) by using the pre-fabricated PtCo-based Hofmann coordination polymer as reactive templates. The elaborate preparation of such intriguing hierarchical architecture with well-dispersed tiny Pt nanoparticles, abundant metal/oxide heterointerfaces and open configuration endows the formed Pt/Co3O4 microflowers with high Pt utilization efficiency, rich active sites, lowered energy barrier for water dissociation and expedited reaction kinetics. Consequently, the Pt/Co3O4 microflowers exhibit superior HER activity with a relatively low overpotential of 34 mV to deliver a current density of 10 mA cm−2, small Tafel slope (34 mV dec−1) and outstanding electrochemical stability, representing an attractive electrocatalyst for practical water splitting. What's more, our concept of in situ construction of metal/oxide heterointerfaces may provide a new opportunity to design high-performance electrocatalysts for a variety of applications.  相似文献   

16.
The development of a non‐precious metal electrocatalyst (NPME) with a performance superior to commercial Pt/C for the oxygen reduction reaction (ORR) is important for the commercialization of fuel cells. We report the synthesis of a NPME by heat‐treating Co‐based metal organic frameworks (ZIF‐67) with a small average size of 44 nm. The electrocatalyst pyrolyzed at 600 °C showed the best performance and the performance was enhanced when it was supported on BP 2000. The resulting electrocatalyst was composed of 10 nm Co nanoparticles coated by 3–12 layers of N doped graphite layers which as a whole was embedded in a carbon matrix. The ORR performance of the electrocatalyst was tested by rotating disk electrode tests in O2‐saturated 0.1 mol/L KOH under ambient conditions. The electrocatalyst (1.0 mg/cm2) showed an onset potential of 1.017 V (vs. RHE) and a half‐wave potential of 0.857 V (vs. RHE), which showed it was as good as the commer‐cial Pt/C (20μgPt/cm2). Furthermore, the electrocatalyst possessed much better stability and re‐sistance to methanol crossover than Pt/C.  相似文献   

17.
Catalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) have garnered great attention as the key character in metal-air batteries.Herein,we developed a superior nonprecious bifunctional oxygen electrocatalyst,fabricated through spatial confinement of Fe/Fe_3 C nanocrystals in pyridinic N and Fe-Nx rich carbon nanotubes(Fe/Fe_3 C-N-CNTs).During ORR,the resultant electrocatalyst exhibits positive onset pote ntial of 1.0 V(vs.RHE),large half-wave potentials of 0.88 V(vs.RHE),which is more positive than Pt/C(0.98 V and 0.83 V,respectively).Remarkably,Fe/Fe_3 C-N-CNTs exhibits outstanding durability and great methanol tolerance,exceeding Pt/C and most reported nonprecious metal-based oxygen reduction electrocatalysts.Moreover,Fe/Fe_3 C-N-CNTs show a markedly low potential at j=10 mA/cm~2,small Tafel slopes and extremely high stability for OER.Impressively,the Fe/Fe_3 C-N-CNTs-based Zn-air batteries demonstrate high power density of 183 mW/cm~2 and robust charge/discharge stability.It is revealed that the spatial confinement effect can impede the aggregation and corrosion of Fe/Fe_3 C nanocrystals.Meanwhile,Fe/Fe_3 C and Fe-Nx play synergistic effect on boosting the ORR/OER activity,which provides an important guideline for construction of inexpensive nonprecious metal-carbon hybrid nanomaterials.  相似文献   

18.
Alloying high-cost Pt with transition metals has been considered as an effective route to synthesize the electrocatalysts with low Pt loading and excellent activity towards oxygen reduction reaction (ORR) under acid solution. The galvanic replacement method, as featured with efficiency and simplicity, is widely reported to produce Pt-based bimetallic alloys and thereby declare the significance of reductive transition metal precursor on the enhancement of ORR performance. Herein, mix-phased Cu−Cu2O precursor was applied to prepare carbon black supported highly dispersed PtCu alloy nanoparticles (PtCu/C). The proper Cu−Cu2O ratios can exactly facilitate the generation of small sized PtCu alloy nanoparticles with regulated bimetallic content. Meanwhile, the Cu2O phase is revealed to benefit the electron transfer from Pt to Cu and thus improve the intrinsic activity of Pt active sites. And the metallic Cu can favor the promotion of electrochemical active surface area. Consequently, the as-prepared PtCu/C behaves impressive ORR activity with half-wave potential of 0.88 V (vs. RHE) and mass activity of 0.49 A cm−2 mgPt−1 at 0.8 V, which is 9.8 times of commercial Pt/C catalysts. Our work will offer helpful advices for the development and regulation of novel Pt-based alloy materials towards diverse electrocatalysis.  相似文献   

19.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   

20.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号