首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have constructed a three-wavelength Ti:sapphire femtosecond laser with an independent tunable wavelength (λ1) and two variable central wavelengths (λ2 and λ3) for use with the multi-excited photosystem II. Stable sub-40-fs pulses are generated. The λ1-wavelength pulses can be tuned independently from 750 nm to 850 nm. The center wavelengths λ2 and λ3 can be varied from 760 nm to 840 nm. Received: 14 April 2000 / Revised version: 5 September 2000 / Published online: 27 April 2001  相似文献   

2.
Ito  S.  Ishikawa  H.  Miura  T.  Takasago  K.  Endo  A.  Torizuka  K. 《Applied physics. B, Lasers and optics》2003,76(5):497-503
We present a 7-TW Ti:sapphire laser system operating at 50 Hz for laser Compton femtosecond X-ray generation. This laser system delivers 8.4 W of average output power at a repetition rate of 50 Hz with a pulse width of 24 fs. It demonstrates successful management using a dynamically stable resonator in the regenerative amplifier and compensation for thermal lensing by a convex mirror in a ring-type four-pass power amplifier. We also present the results of closed-loop corrections for distorted wavefronts of amplified and compressed laser pulses, using an adaptive optical system consisting of a Shack–Hartmann-type wavefront sensor and a deformable mirror. This closed-loop correction results in dramatic improvements, reducing wavefront distortions below 0.05 λ rms. Received: 31 October 2002 / Revised version: 3 March 2003 / Published online: 5 May 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/61-3349, E-mail: ito@festa.or.jp  相似文献   

3.
4.
We report the generation of tunable high-repetition-rate optical pulses in the mid-infrared using synchronously pumped parametric oscillation in periodically poled LiNbO3 (PPLN). Using a Kerr-lens-mode-locked Ti:sapphire laser as the pump source and a PPLN crystal incorporating grating periods of 21.0–22.4 μm, we have achieved wavelength conversion in the -–4 6μm spectral range in the mid-infrared. The use of a semi-monolithic cavity design and hemispherical focusing has permitted pulse generation in the strong idler absorption region of PPLN, resulting in a simple, compact, all-solid-state configuration with a pump power threshold as low as 17 mW and mid-infrared idler powers of up to 64 mW at 9% extraction efficiency. Signal output powers of up to 280 mW at 35% extraction efficiency are available over the -–1.004 1.140μm spectral range at 80.5 MHz and pulse repetition rates at harmonics of the fundamental frequency up to 322 MHz have also been obtained. Received: 5 December 2000 / Revised version: 23 January 2001 / Published online: 27 April 2001  相似文献   

5.
We demonstrate intracavity frequency doubling of a standard femtosecond Ti:sapphire oscillator. The cavity is extended with a pair of focusing mirrors and a 0.5-mm-thick BBO crystal. We achieve a repetition rate of 50 MHz and simultaneously generate 22 mW of 55-fs pulses at 810 nm and 200 mW of 73-fs pulses at 405 nm, which corresponds to 4 nJ per pulse. We create a total of 330-mW, 405-nm light when pumping the Ti:sapphire crystal with 5.7 W from an Ar-ion laser, corresponding to a conversion efficiency of 5.7%. No saturation is found, which implies that higher outputs can be achieved with higher pump rates. Preliminary results from the use of blue pulses as pump in an optical parametric amplifier seeded by pulses from a photonic crystal fiber are presented. Received: 27 January 2003 / Revised version: 27 March 2003 / Published online: 12 May 2003 RID="*" ID="*"Corresponding author. Fax: +45-861/96199, E-mail: tva@chem.au.dk  相似文献   

6.
The spectral characteristics and stability of a frequency of intermode beats of a fs self-mode-locked Ti:sapphire laser are investigated. An active method is used to obtain high stability. The frequency stability of intermode beats not lower than 1.27×10−12 rms in 50 s is achieved. Possible applications of the setup, such as measurement of large frequency intervals in the optical range, creation of optical frequency synthesizers, etc., are proposed. The physical principles for the creation of an optical clock of a new type using a highly stable fs Ti:sapphire laser are considered. Received: 7 May 1999 / Published online: 27 October 1999  相似文献   

7.
High-power sub-10-fs Ti:sapphire oscillators   总被引:1,自引:0,他引:1  
Received: 10 March 1997/Revised version: 16 April 1997  相似文献   

8.
We have measured detailed thermal lensing in a power amplifier of a terawatt Ti:sapphire laser operating at 50 Hz. The thermal lensing in the amplifier was evaluated by measuring the optical path difference (OPD) using a Shack–Hartmann-type wavefront sensor. It was found that the radial dependence of the OPD was almost quadratic in the pumping region, despite inhomogeneous pumping. Therefore, a simple spherical lens or convex mirror effectively compensates for the thermal lens in our amplifier. We found that the thermal lens profile was temporally stable, and did not degrade the pointing stability of the amplified laser pulses. We also found that the time constant of the thermal distortion in our power amplifier was approximately 0.5 s. Received: 3 September 2001 / Revised version: 23 January 2002 / Published online: 14 March 2002  相似文献   

9.
10.
Rate-equation analysis and experiments on a pulsed dual-wavelength Ti:sapphire laser are reported in the paper. A four-energy-level system with two lower-energy levels is put forward and numerical calculations are given. A simple optical setup with two sub-resonators is constructed, which yields a total energy from dual-wavelength lasers up to 41.8 mJ. The largest tunable range is over 110 nm. Laser characteristics of dual-wavelength pulses are observed. Experimental results are in accord with rate-equation-theory results. Received: 13 July 2000 / Revised version: 18 October 2000 / Published online: 30 March 2001  相似文献   

11.
12.
Broadly tunable difference-frequency generation (DFG) in AgGaS2 was achieved by mixing dual-wavelength oscillating pulses from an electronically tuned Ti:sapphire laser with a two-frequency-driven acousto-optic device. Continuous tuning from 6.5 to 8.5 μm was achieved by simultaneous dual-wavelength-tuned DFG without crystal rotation. In the dual-pulse oscillation, the shorter and longer wavelength pulses were tuned from 700 to 775 nm and from 763 to 880 nm, respectively, while keeping the phase-matching relationship for DFG. When crystal rotation was adopted, however, the tunable output range was extended from 5.3 to 12 μm by tuning the longer wavelength pump pulse, while the shorter wavelength pulse was fixed. Received: 18 November 1998 / Revised version: 5 February 1999 / Published online: 26 May 1999  相似文献   

13.
14.
3+ :LiSrAlF6 (Cr:LiSAF) regenerative amplifier, seeded by a diode-pumped Cr:LiSAF femtosecond oscillator. The amplifier produced pulses of less than 200 fs duration and greater than 1 μJ energy at repetition rates of up to 25 kHz. Received: 27 February 1997/Revised version: 16 April 1997  相似文献   

15.
The techniques of coupled-cavity modelocking and self-modelocking in which intensity-induced nonlinear effects are exploited have been reviewed for broad-band gain media. Particular emphases have been placed upon the archetypical colour-centre and titanium-sapphire laser configurations in which these techniques were first demonstrated and subsequent refinements are set in context. A femtosecond optical parametric oscillator pumped by a self-mode-locked titanium-sapphire laser has also been described as an exemplar of a practical means of extending the source tunability into the mid-infrared spectral region.  相似文献   

16.
17.
2 is investigated with a XeCl laser. It is shown that energy conversion to rotational Stokes radiation can be efficiently obtained by properly choosing the focusing geometry of pump radiation and the pressure of the Raman medium even at moderate pulse energies. Energy conversion to the first rotational Stokes at 313.8 nm with efficiencies as high as 38% is obtained with a circularly polarised XeCl pump beam of 10-mJ energy focused in 30 bar of H2. The spectral and optical characteristics of the pump and the rotational Stokes radiation are analysed. Received: 29 May 1996/Revised version: 7 March 1997  相似文献   

18.
We describe a tunable Ti:Sapphire regenerative amplifier which is used to amplify 120 fs pulses from a self-mode-locked Ti:Sapphire laser to energies in the range of 7–12 mJ from 760 nm to 855 nm. We have used three sets of cavity mirrors in the regenerative amplifier to vary the output wavelength of the laser.On leave from Institute of Laser Engineering, Osaka University, 2-6, Yamada-oka, Osaka 565, Japan (Fax: +81-6/877-4799)  相似文献   

19.
We report the first diode-pumped solid-state laser operating in cw-mode-locked regime and simultaneously achieving intracavity frequency-tripling. This laser provide UV picosecond pulses (λ=355 nm) of 10 ps duration with 0.5 mW average power at 150 MHz repetition rate. A different set of adjustments gave rise to a Q-switched mode-locked regime. Trains of hundred UV pulses of 60 ps duration and 4 W peak power were produced in this latter case at 50 kHz repetition rate. Received: 12 October 1998 / Revised version: 12 December 1998 / Published online: 26 May 1999  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号