首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using 1-butyl-3-methylimidazolium hexa?uorophosphate ([BMIM][PF6]) room temperature ionic liquid (RTIL) as extraction solvent, tetrahydrofuran (THF) as disperser solvent, the organophosphorus pesticide dichlorvos in water was determined by dispersive liquid-liquid microextraction (DLLME) combined with high-performance liquid chromatography. Factors affecting RTIL-DLLME (type of disperser solvent, amount of RTIL, volume of disperser solvent, percentage of NaCl and volume and pH of water sample) were optimized by the single-factor method, obtaining the most favorable results when using 65 μL of [BMIM][PF6] and 260 μL of THF to extract the compound from an 8-mL water sample at pH 5.0 containing 25% (w/v) of NaCl. Under these optimum conditions, an enrichment factor of 215-fold was obtained. The calibration curves were linear in the concentration range of 2-1,000 μg/L. The limit of detection calculated at a signal-to-noise ratio of 3 was 0.2 μg/L. The relative standard deviations (RSD) for six replicate experiments at 20, 100 and 200 μg/L concentration levels were 1.8%, 1.3% and 1.3 %, respectively. Then the proposed method was applied to the analysis of three different water sample sources (tap, farm and rain water) and the relative recoveries and RSD of spiked water samples were 95.6-102.4% and 0.6-3.1%, respectively, at three different concentration levels of 20, 100 and 200 μg/L.  相似文献   

2.
Multiwalled carbon nanotubes functionalized by oxidation of original multiwalled carbon nanotubes with NaClO were prepared and their application as solid phase extraction sorbent for 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated systemically, and a new method was developed for the determination of trace 2,4-D in water samples based on extraction and preconcentration of 2,4-D with solid phase extraction columns packed with NaClO-treated multiwalled carbon nanotubes prior to its determination by HPLC. The optimum experimental parameters for preconcentration of 2,4-D, including the column activating conditions, the amount of the sorbent, pH of the sample, elution composition, and elution volume, were investigated. The results indicated 2,4-D could be quantitatively retained by 100 mg NaClO-treated multiwalled carbon nanotubes at pH 5, and then eluted completely with 10 mL 3:1 (v/v) methanol-ammonium acetate solution (0.3 mol/L). The detection limit of this method for 2,4-D was 0.15 μg/L, and the relative standard deviation was 2.3% for fortified tap water samples and 2.5% for fortified riverine water sample at the 10 μg/L level. The method was validated using fortified tap water and riverine water samples with known amount of 2,4-D at the 0.4, 10, and 30 μg/L levels, respectively.  相似文献   

3.
Lu Q  Wu P  Collins GE 《Electrophoresis》2007,28(19):3485-3491
Rapid and quantitative determination of sodium monofluoroacetate in diluted fruit juices (dilution 1:9 v/v in deionized water) and tap water was performed by microchip CE, using contactless conductivity detection. A separation buffer consisting of 20 mM citric acid and histidine at pH 3.5 enabled the detection of the monofluoroacetate (MFA) anion in diluted apple juice, cranberry juice, and orange juice without lengthy sample pretreatments. The analyte was very well separated from interfering anionic species present in juices and tap water. LODs in diluted juices and tap water were determined to be 125, 167, 138, and 173 microg/L for tap water, apple juice, cranberry juice, and orange juice, respectively, based upon an S/N of 3:1. Taking into account the dilution factor, the LODs for juice samples range from 1 to 2 mg/L, which is adequate for monitoring the toxicity of MFA in these juice beverages and tap water. The calibration curves for MFA in diluted fruit juices were linear over the range of 500 microg/L to 80 mg/L. The total analysis time for detecting the MFA anion in fruit juices was less than 5 min, which represents a considerable reduction in analysis time compared to other analytical methods currently used in food analysis.  相似文献   

4.
A simple analytical scheme for the detection and quantification of amitrol and triazine herbicides (atrazine, ametryn and atraton) and degradation product (2‐hydroxyatrazine) in environmental water samples by CZE is reported. On‐column preconcentration of analytes from untreated water samples (mineral, spring, tap and river water) is accomplished by introducing an acid plug (200 mM citrate of pH 2.0) after the sample and then proceeding with the CZE separation, using 100 mM formiate buffer of pH 3.5 as running buffer and 25.0 KV as separation voltage. UV detection at 200 nm provides LODs from 50 to 300 nM in untreated samples and they were lowered tenfold by sample preconcentration by evaporation. Calculated recoveries were typically higher than 90%. Minimal detectable concentration of the electroactive amitrol could be decreased about 20‐fold when electrochemical detection was employed by monitoring the amperometric signal at +800 mV using a carbon paste electrode (LOD of 9.6 nM, 0.81 μg/L, versus 170 nM, 14.3 μg/L, using amperometric and UV detection, respectively) in untreated water samples.  相似文献   

5.
建立了以二乙基二硫代氨基甲酸钠为配位剂,十二醇为萃取剂,乙醇为分散剂的悬浮固化分散液-液微萃取—火焰原子吸收光谱法测定水样中痕量铅的方法。详细探讨了影响萃取效率的因素。优化条件为:二乙基二硫代氨基甲酸钠的用量为10-6 mol,十二醇体积为90.00μL,乙醇体积为1.00 mL,pH为7.00。在最佳条件下,铅的检出限为1.12μg/L,富集倍率为16.00,线性范围5.00~600.00μg/L,对含有20.00μg/L和600.00μg/L Pb的标准溶液平行萃取测定11次,测定结果的RSD分别为3.73%和2.62%。本方法应用于自来水、河水及海水中痕量铅的分析,加标回收率为90.10%~100.70%。  相似文献   

6.
In this study, a simple and rapid extraction method based on the application of polypyrrole‐coated Fe3O4 nanoparticles as a magnetic solid‐phase extraction sorbent was successfully developed for the extraction and preconcentration of trace amounts of formaldehyde after derivatization with 2,4‐dinitrophenylhydrazine. The analyses were performed by high‐performance liquid chromatography followed by UV detection. Several variables affecting the extraction efficiency of the formaldehyde, i.e., sample pH, amount of sorbent, salt concentration, extraction time and desorption conditions were investigated and optimized. The best working conditions were as follows: sample pH, 5; amount of sorbent, 40 mg; NaCl concentration, 20% w/v; sample volume, 20 mL; extraction time, 12 min; and 100 μL of methanol for desorption of the formaldehyde within 3 min. Under the optimal conditions, the performance of the proposed method was studied in terms of linear dynamic range (10–500 μg/L), correlation coefficient (R2 ≥ 0.998), precision (RSD% ≤ 5.5) and limit of detection (4 μg/L). Finally, the developed method was successfully applied for extraction and determination of formaldehyde in tap, rain and tomato water samples, and satisfactory results were obtained.  相似文献   

7.
Two in‐line enrichment procedures (large volume sample stacking (LVSS) and field amplified sample injection (FASI)) have been evaluated for the CZE analysis of haloacetic acids (HAAs) in drinking water. For LVSS, separation on normal polarity using 20 mM acetic acid–ammonium acetate (pH 5.5) containing 20% ACN as BGE was required. For FASI, the optimum conditions were 25 s hydrodynamic injection (3.5 kPa) of a water plug followed by 25 s electrokinetic injection (?10 kV) of the sample, and 200 mM formic acid–ammonium formate buffer at pH 3.0 as BGE. For both FASI and LVSS methods, linear calibration curves (r2>0.992), limit of detection on standards prepared in Milli‐Q water (49.1–200 μg/L for LVSS and 4.2–48 μg/L for FASI), and both run‐to‐run and day‐to‐day precisions (RSD values up to 15.8% for concentration) were established. Due to the higher sensitive enhancement (up to 310‐fold) achieved with FASI‐CZE, this method was selected for the analysis of HAAs in drinking water. However, for an optimal FASI application sample salinity was removed by SPE using Oasis WAX cartridges. With SPE‐FASI‐CZE, method detection limits in the range 0.05–0.8 μg/L were obtained, with recoveries, in general, higher than 90% (around 65% for monochloroacetic and monobromoacetic acids). The applicability of the SPE‐FASI‐CZE method was evaluated by analyzing drinking tap water from Barcelona where seven HAAs were found at concentration levels between 3 and 13 μg/L.  相似文献   

8.
建立饮用水中微囊藻毒素(MC–RR,MC–LR)的超高效液相色谱–串联质谱检测方法。样品经PVDF针式过滤头过滤后直接进样,采用喷雾正离子源(ESI~+)和多重反应监测模式(MRM)测定。MC–RR的质量浓度在0.02~10.00μg/L范围内与色谱峰面积呈良好的线性,线性相关系数r~2=0.998 9,检出限为0.096μg/L,测定结果的相对标准偏差为6.6%~9.1%(n=7),加标回收率为99.0%~103.0%。MC–LR的质量浓度在0.1~20μg/L范围内与色谱峰面积呈良好的线性,线性相关系数r~2=0.999 2,检出限为0.188μg/L,测定结果的相对标准偏差为4.3%~10.0%(n=7),加标回收率为93.0%~114.0%。该方法灵敏度高、重现性好,可用于饮用水中微囊藻毒素的检测。  相似文献   

9.
分散液-液微萃取/高效液相色谱法测定水样中的痕量双酚A   总被引:4,自引:0,他引:4  
建立了分散液-液微萃取与高效液相色谱联用技术测定水样中痕量双酚A(BPA)的方法. 通过对实验条件的筛选及优化, 得到最佳条件: 22.5 μL氯苯作萃取剂、0.5 mL丙酮作分散剂、0 min静止萃取时间、调节pH 3.2左右、10%离子强度及9 mL水样体积. 此条件下方法的线性范围为0.5~100 μg/L(R2=0.9941), 检出限为0.10 μg/L. 在BPA质量浓度为1 μg/L条件下, 方法回收率为87.8%~111.0%, 相对标准偏差8.3%(n=5), 富集倍数范围1905~2527. 对添加不同BPA浓度的自来水、地表水及回用中水进行分析, 回收率分别为(108±11.1)%, (107±13.2)%及(81.2±6.2)%(n=3). 在既定的色谱条件下, BPA的测定不受乙炔基雌二醇、雌二醇、雌三醇、雌酮和壬基酚等雌激素的干扰.  相似文献   

10.
In this study, simple and efficient ultrasound‐assisted dispersive liquid‐liquid microextraction combined with gas chromatography (GC) was developed for the preconcentration and determination of methyl‐tert‐butyl ether (MTBE) in water samples. One hundred microliters of benzyl alcohol was injected slowly into 10 mL home‐designed centrifuge glass vial containing an aqueous sample with 30% (w/v) of NaCl that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 μL of separated benzyl alcohol was injected into a gas chromatographic system equipped with a flame ionization detector (GC‐FID) for analysis. Several factors influencing the extraction efficiency such as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation times were investigated and optimized. Using optimum extraction conditions a detection limit of 0.05 μg L‐1 and a good linearity (r2 = 0.998) in a calibration range of 0.1‐500 μg L‐1 were achieved. This proposed method was successfully applied to the analysis of MTBE in tap, well and a ground water sam ple contaminated by leaking gasoline from an underground storage tank (LUST) in a gasoline service station.  相似文献   

11.
In the present work, a minicolumn of XAD-4 loaded with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (Br-PADAP) is proposed as a preconcentration system for uranium determination in well, tap and mineral water samples by spectrophotometer using arsenazo III as the chromogenic reagent. Initially, a two-level (23) full factorial design was used for the preliminary evaluation of three factors, involving the following variables: sampling flow rate, elution flow rate, and pH. This design has revealed that, for the studied levels, buffer concentration and pH were significant factors. When the experimental conditions established in the optimization step were pH = 8.6, and an elution flow rate of 8.6 mL min?1 using 0.5% m/v ascorbic acid, this system has allowed for the determination of uranium with a detection limit (LOD) (3σ/S) of 0.05 μg L?1 and a quantification limit (LOQ) (10σ/S) of 0.16 μg L?1. The precision expressed as the relative standard deviation (R.S.D.) of 0.8% and 1.9% at 10.0 and 1.0 μg L?1, respectively- and a preconcentration factor of 184.5 for a sample volume of 50.0 mL. Accuracy was confirmed by uranium determination in the standard reference material, NIST SRM 1566b trace element units in Oyster Tissue samples, and spike tests with recuperations ranging from 93.2 to 105%; the procedure were applied for uranium determination in tap water, well water, and drinking water samples collected from Caetité and Cruz das Almas Cities, Bahia, Brazil. Five water samples were analyzed the uranium concentrations varied from 0.50 to 2.07 μg L?1  相似文献   

12.
The simultaneous use of a hollow‐fiber‐supported liquid membrane and dispersive liquid–liquid microextraction for the determination of pesticides directly in grape juice was investigated. The detection and quantification were performed by liquid chromatography with diode array detection. The optimum extraction condition was reached by filling the pores of the membrane wall with dodecanol and using hexane/acetone as extraction/dispersion solvents. Salt addition had a highly negative effect on the extraction efficiency and the optimum extraction time was 60 min. The volume of hexane/acetone mixture and the sample pH did not affect the signal at the levels studied. Therefore, an intermediate amount of these solvents (250 μL; 1:7.5 v/v) and pH 6 were selected. The optimum desorption condition was obtained with acetonitrile and 10 min of desorption time. The linear working range varied from 58 to 500 μg/L (parathion‐methyl), 62–500 μg/L (difenoconazole) and 107–500 μg/L (chlorpyrifos), with correlation coefficients ranging from 0.9980–0.9942. The limits of detection and quantification found were, respectively, 17 and 58 μg/L for parathion‐methyl, 19 and 62 μg/L for difenoconazole and 32 and 107 μg/L for chlorpyrifos. The relative standard deviation ranged between 3.5 and 11.2%.  相似文献   

13.
白晶  卢秀芬  乐晓春  于波 《色谱》2003,21(6):545-548
应用液相色谱-等离子质谱联用的方法分析食品样品中的主要有机砷(一甲基砷和二甲基砷)和无机砷(三价砷和五价砷)。 采用50%(体积分数)甲醇水溶液作为萃取剂,将食品样品进行预处理,再以5 mmol/L四丁氢铵,2 mmol/L丙二酸和5%(体积分数)甲醇水溶液作为流动相(pH 5.9),C18色谱柱(150 mm×4 mm i.d., 5 μm)将样品萃取液进行液相色谱分离,最后进入等离子质谱仪定性分析。 经测定发现,新鲜蔬菜和水果样品中主要含有的无机砷为三价砷和五价砷,有机砷为二甲基砷。一甲基砷在个别样品  相似文献   

14.
A simple, efficient, solvent‐free, and commercial readily available approach for determination of five volatile chlorinated hydrocarbons in water samples using the static headspace sampling and gas chromatography with electron capture detection has been described. The proposed static headspace sampling method was initially optimized and the optimum experimental conditions found were 10 mL water sample containing 20% w/v sodium chloride placed in a 20 mL vial and stirred at 50ºC for 20 min. The linearity of the method was in the range of 1.2–240 μg/L for dichloromethane, 0.2–40 μg/L for trichloromethane, 0.005–1 μg/L for perchloromethane, 0.025–5 μg/L for trichloroethylene, and 0.01–2 μg/L for perchloroethylene, with coefficients of determination ranging between 0.9979 and 0.9990. The limits of detection were in the low μg/L level, ranging between 0.001 and 0.3 μg/L. The relative recoveries of spiked five volatile chlorinated hydrocarbons with external calibration method at different concentration levels in pure, tap, sea water of Jiaojiang Estuary, and sea water of waters of Xiaomendao were in the range of 91–116, 96–105, 86–112, and 80–111%, respectively, and with relative standard deviations of 1.9–3.6, 2.3–3.5, 1.5–2.7, and 2.3–3.7% (n = 5), respectively. The performance of the proposed method was compared with traditional liquid–liquid extraction on the real water samples (i.e., pure, tap, and sea water, etc.) and comparable efficiencies were obtained. It is concluded that this method can be successfully applied for the determination of volatile chlorinated hydrocarbons in different water samples.  相似文献   

15.
A sensitive and selective gas chromatography with mass spectrometry method was developed for the simultaneous determination of three organophosphorus pesticides, namely, chlorpyrifos, malathion, and diazinon in three different food commodities (milk, apples, and drinking water) employing solid‐phase extraction for sample pretreatment. Pesticide extraction from different sample matrices was carried out on Chromabond C18 cartridges using 3.0 mL of methanol and 3.0 mL of a mixture of dichloromethane/acetonitrile (1:1 v/v) as the eluting solvent. Analysis was carried out by gas chromatography coupled with mass spectrometry using selected‐ion monitoring mode. Good linear relationships were obtained in the range of 0.1–50 μg/L for chlorpyrifos, and 0.05–50 μg/L for both malathion and diazinon pesticides. Good repeatability and recoveries were obtained in the range of 78.54–86.73% for three pesticides under the optimized experimental conditions. The limit of detection ranged from 0.02 to 0.03 μg/L, and the limit of quantification ranged from 0.05 to 0.1 μg/L for all three pesticides. Finally, the developed method was successfully applied for the determination of three targeted pesticides in milk, apples, and drinking water samples each in triplicate. No pesticide was found in apple and milk samples, but chlorpyrifos was found in one drinking water sample below the quantification level.  相似文献   

16.
A simple, efficient, solvent‐free, and commercial readily available approach for determination of 11 chlorobenzenes (CBs) in water samples using the static headspace (HS) sampling and gas chromatography‐electron capture detector has been described. The proposed static HS sampling method was initially optimized and the optimum experimental conditions found were 10 mL water sample containing 20% (w/v) sodium chloride placed in a 20 mL vial and stirred at 70°C for 30 min. The linearity of the method ranged from 0.16 to 8.0 μg/L for dichlorobenzene isomers, 0.0176~0.88 μg/L for trichlorobenzene isomers, 0.004~0.2 μg/L for tetrachlorobenzene isomers, and from 0.001 to 0.05 μg/L for pentachlorobenzene and hexachlorobenzene, with correlation coefficients ranging between 0.9992 and 0.9999. The limits of detection were in the low μg/L level, ranging between 0.0002 and 0.04 μg/L. The relative recoveries of spiked CBs with external calibration or standard addition method at different concentration levels in pure, tap, and sea water samples were 83~116%, 89~108%, and 93~112%, respectively, and with relative standard deviations of 1.9~6.3%, 1.6~5.4%, and 2.5~5.7% (n = 5), respectively. It is concluded that this method can be successfully applied for the determination of CBs in pure, tap, and sea water samples.  相似文献   

17.
The simultaneous extraction of acidic and basic pollutants from water samples is an interesting and debatable work in sample preparation techniques. A novel and efficient method named ion pair based surfactant assisted microextraction (IP-SAME) was applied for extraction and preconcentration of five selected acidic and basic aromatic species as model compounds in water samples, followed by high performance liquid chromatography-ultraviolet detection. A mixture including 1 mL of ultra-pure water (containing ionic surfactant as emulsifier agent) and 60 μL 1-octanol (as extraction solvent) was rapidly injected using a syringe into a 10.0 mL water sample which formed an emulsified solution. IP-SAME mechanism can be interpreted by two types of molecular mass transfer into the organic solvent (partitioning and ion pairing for non-ionized and ionized compounds, respectively) during emulsification process. The effective parameters on the extraction efficiency such as the extraction solvent type and its volume, type of the surfactant and its concentration, sample pH and ionic strength of the sample were optimized. Under the optimum conditions (60 μL of 1-octanol; 1.5 mmol L(-1) cethyltrimethyl ammonium bromide (CTAB) as emulsifier agent and sample pH 10.0), the preconcentration factors (PFs), detection limits and linear dynamic ranges (LDRs) were obtained in the range of 87-348, 0.07-0.6 μg L(-1) and 0.1-200 μg L(-1) respectively. All of natural water samples were successfully analyzed by the proposed method.  相似文献   

18.
An extended study of different sampling introduction approaches using inductively coupled plasma mass spectrometry (ICP-MS) is presented for the determination of boron in steel samples. The following systems for sample introduction were applied: direct sample solution nebulization by continuous nebulization (CN) using a cross-flow nebulizer and with flow injection (FI), applied to 0.1% (m/v) and 0.5% (m/v) sample solutions, respectively; FI after iron matrix extraction, using acetylacetone–chloroform, and isotopic dilution (ID) analysis as the calibration method; FI with on-line electrolytic matrix separation; and spark ablation (SA) and laser ablation (LA) as solid sampling techniques. External calibration with matrix-matching samples was used with CN, SA, and LA, and only acid solutions (without matrix matching) with FI methods. When FI was directly applied to a sample solution, the detection limit was of 0.15 μg g−1, improving by a factor of 4 that was obtained from the CN measurements. Isotopic dilution analysis, after matrix removal by solvent extraction, made it possible to analyse boron with a detection limit of 0.02 μg g−1 and, with the on-line electrolytic process, the detection limit was of 0.05 μg g−1. The precision for concentrations above 10 times the detection limit was better than 2% for CN, as well as for FI methods. Spark and laser ablation sampling systems, avoiding digestion and sample preparation procedures, provided detection limits at the μg g−1 levels, with RSD values better than 6% in both cases. Certified Reference Materials with B contents in the range 0.5–118 μg g−1 were used for validation, finding a good agreement between certified and calculated values.  相似文献   

19.
胡忠阳  潘广文  叶明立 《色谱》2009,27(3):337-340
建立了一种同时测定离子液体中六氟磷酸根(PF~6)和痕量杂阴离子氟、氯、溴(F~,Cl~,Br~)的离子色谱方法(IC)。样品经溶解、稀释、过滤后用Dionex IonPac AS22分离柱(250 mm×4 mm)分离,淋洗液为碳酸盐-乙腈体系(体积比为70:30),流速1.0 mL/min,采用Dionex DS6电导检测器检测,外标法定量。F~,Cl~,Br~和PF~6的线性范围分别为0.5~50 μg/L、10~200 μg/L、10~200 μg/L和0.9~45 mg/L,线性相关系数分别为0.9999,0.9998,0.9999和0.9998,加标回收率为94.5%~100.5%,相对标准偏差为0.63%~1.03%,检出限(以信噪比为3计)分别为0.5 μg/L、2.0 μg/L、5.0 μg/L和0.9 mg/L。该方法用于离子液体中六氟磷酸根和痕量杂阴离子的同时测定,结果令人满意。  相似文献   

20.
The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol-Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol-Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol-gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 × 10(-10) M, corresponding to 0.75 μg L(-1). It showed linear responses in the range of 7.7 × 10(-10) to 1.9 × 10(-9) M of MC-LR (corresponding to 0.77-2.00 μg L(-1)), thus including the limiting value for MC-LR in waters (1.0 μg L(-1)). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl(-)) showed limited interference while aluminium (Al(3+)), ammonium (NH(4)(+)), magnesium (Mg(2+)), manganese (Mn(2+)), sodium (Na(+)), and sulfate (SO(4)(2-)) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号