首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chung CK  Grubbs RH 《Organic letters》2008,10(13):2693-2696
Ruthenium olefin metathesis catalysts bearing an N-phenyl-substituted N-heterocyclic carbene (NHC) ligand that are resistant to decomposition through C-H activation have been prepared and tested in ring closing metathesis (RCM), cross metathesis (CM), and ROMP reactions. The N, N'-diphenyl-substituted NHC complex proved to be one of the most efficient catalysts in RCM to form tetrasubstituted olefins.  相似文献   

2.
A modular and flexible strategy towards the synthesis of N-heterocyclic carbene (NHC) ligands bearing Brønsted base tags has been proposed and then adopted in the preparation of two tagged NHC ligands bearing rests of isonicotinic and 4-(dimethylamino)benzoic acids. Such tagged NHC ligands represent an attractive starting point for the synthesis of olefin metathesis ruthenium catalysts tagged in non-dissociating ligands. The influence of the Brønsted basic tags on the activity of such obtained olefin metathesis catalysts has been studied.  相似文献   

3.
Predictive catalysis must be the tool that does not replace experiments, but acts as a selective agent, so that synthetic strategies of maximum profitability are used in the laboratory in a surgical way. Here, nanotechnology has been used in olefin metathesis from homogeneous Ru-NHC catalysts, specifically annulating a C60 fullerene to the NHC ligand. Based on results with the C60 in the backbone, a sterile change with respect to the catalysis of the metal center, an attempt has been made to bring C60 closer to the metal, by attaching it to one of the two C−N bonds of the imidazole group of the SIMes (1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene) ligand (reference NHC ligand of the 2nd generation Grubbs catalysts) to increase the steric pressure of C60 in the first sphere of reactivity of the metal. The DFT calculated thermodynamics and the kinetics of SIMes-derived systems show that they are efficient catalysts for olefin metathesis.  相似文献   

4.
The synthesis, structure, and performance of new ruthenium-based olefin metathesis catalysts, featuring fluorinated NHC ligands are presented. The introduction of halogen atoms into the N-heterocyclic carbene ligand profoundly alters the catalytic activity and can afford a more efficient catalyst. Structural investigations suggest that a fluorine-ruthenium interaction is responsible for this increased activity.  相似文献   

5.
N-heterocyclic carbene (NHC) ligands are a versatile and useful class of ligands that have enjoyed much success over the past few decades in organometallic chemistry. This fact is exemplified most convincingly in Grubbs 2nd generation olefin metathesis catalysts. We explore the electronic impact of the NHC-ligand by decoupling electronic and steric effects through simplified model N-heterocyclic carbenes. Saturated and unsaturated N-heterocyclic carbene ligands give rise to fundamentally different frontier orbitals in these catalysts, suggesting a need to classify them as two electronically distinct ligand classes.  相似文献   

6.
Summary: Imidazol(in)ium-2-carboxylates were used as N-heterocyclic carbene (NHC) ligand precursors to convert the [RuCl2(p-cymene)]2 dimer into three ruthenium-arene complexes of the [RuCl2(p-cymene)(NHC)] type. The decarboxylation of NHC · CO2 betaines also provided a convenient synthetic path to prepare five well-known ruthenium-NHC catalysts for olefin metathesis and related reactions, including the second generation Grubbs and Hoveyda–Grubbs catalysts, via ligand exchange with phosphine-containing, first generation ruthenium-benzylidene or indenylidene complexes. Both procedures are particularly attractive from a practical point of view, because NHC · CO2 adducts are stable zwitterionic compounds that can be stored and handled with no particular precautions.  相似文献   

7.
综述了近几年来以N-杂环卡宾为配体的金属络合物催化有机合成的反应。  相似文献   

8.
A series of ruthenium carbene catalysts containing 2‐sulfidophenolate bidentate ligand with an ortho‐substituent next to the oxygen atom were synthesized. The molecular structure of ruthenium carbene complex containing 2‐isopropyl‐6‐sulfidophenolate ligand was confirmed through single crystal X‐ray diffraction. An oxygen atom can be found in the opposite position of the N‐heterocyclic carbene (NHC) based on the steric hindrance and strong trans‐effects of the NHC ligand. The ruthenium carbene catalyst can catalyze ring‐opening metathesis polymerization (ROMP) reaction of norbornene with high activity and Z‐selectivity and cross metathesis (CM) reactions of terminal alkenes with (Z)‐but‐2‐ene‐1,4‐diol to give Z‐olefin products (Z/E ratios, 70:30–89:11) in low yields (13%–38%). When AlCl3 was added into the CM reactions, yields (51%–88%) were considerably improved and process becomes highly selective for E‐olefin products (E/Z ratios, 79:21–96:4). Similar to other ruthenium carbene catalysts, these new complexes can tolerate different functional groups.  相似文献   

9.
A series of ruthenium-based olefin metathesis catalysts coordinated with unsymmetrical N-heterocyclic carbene (NHC) ligands has been prepared and fully characterized. These complexes are readily accessible in one or two steps from commercially available [(PCy(3))(2)Cl(2)Ru==CHPh]. All of the complexes reported herein promote the ring-closing of diethyldiallyl and diethylallylmethallyl malonate, the ring-opening metathesis polymerization of 1,5-cyclooctadiene, and the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, in some cases surpassing in efficiency the existing second-generation catalysts. Especially in the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene, all new catalysts demonstrate similar or higher activity than the second-generation ruthenium catalysts and, most importantly, afford improved E/Z ratios of the desired cross-product at conversion above 60 %. The influence of the unsymmetrical NHC ligands on the initiation rate and the activation parameters for the irreversible reaction of these ruthenium complexes with butyl vinyl ether were also studied. Finally, the synthesis of the related chlorodicarbonyl(carbene) rhodium(I) complexes allowed for the study of the electronic properties of the new unsymmetrical NHC ligands that are discussed in detail.  相似文献   

10.
This paper presents a density functional theory study of the ruthenium-catalyzed olefin metathesis reactions. The ligand binding energy has been calculated in the first generation of Grubbs-type (PCy3)2Cl2Ru=CHPh (pre)catalyst, as well as in the heteroleptic (pre)catalytic systems in which a N-heterocyclic carbene, NHC, ligand substitutes a single phosphine. In agreement with experiments PCy3 coordinates more strongly to Ru in the heteroleptic (pre)catalysts than in the Grubbs-type (pre)catalyst. Moreover, ethene coordination and insertion into the Ru-alkylidene bond in the above-mentioned systems, as well as in the Hofmann type catalytic system with a cis-coordinated phosphane ligand, has been studied. The calculated insertion barrier for the NHC systems are lower than that of the (PCy3)2Cl2Ru=CHPh system. This is consistent with the higher activity experimentally observed for the NHC-based system.  相似文献   

11.
The discovery and development of a new class of Ru-based catalysts for olefin metathesis is described. These catalysts, particularly those that do not bear a phosphine ligand, have been demonstrated to promote unique levels of reactivity in a variety of olefin metathesis reactions. The design and development of supported and chiral optically pure variants of this class of Ru catalysts for use in enantioselective metathesis are discussed as well. All catalysts are air stable, reusable, and can be employed with unpurified solvents.  相似文献   

12.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N-heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo-, cross and ring-opening cross metathesis reactions. The catalysts remain active even in 2-PrOH and are applicable in ring-opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3-dimesitylimidazol-2-ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

13.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

14.
Ruthenium–cyclic(alkyl)(amino)carbene (CAAC) catalysts, used at ppm levels, can enable dramatically higher productivities in olefin metathesis than their N-heterocyclic carbene (NHC) predecessors. A key reason is the reduced susceptibility of the metallacyclobutane (MCB) intermediate to decomposition via β-H elimination. The factors responsible for promoting or inhibiting β-H elimination are explored via density functional theory (DFT) calculations, in metathesis of ethylene or styrene (a representative 1-olefin) by Ru–CAAC and Ru–NHC catalysts. Natural bond orbital analysis of the frontier orbitals confirms the greater strength of the orbital interactions for the CAAC species, and the consequent increase in the carbene trans influence and trans effect. The higher trans effect of the CAAC ligands inhibits β-H elimination by destabilizing the transition state (TS) for decomposition, in which an agostic MCB Cβ–H bond is positioned trans to the carbene. Unproductive cycling with ethylene is also curbed, because ethylene is trans to the carbene ligand in the square pyramidal TS for ethylene metathesis. In contrast, metathesis of styrene proceeds via a ‘late’ TS with approximately trigonal bipyramidal geometry, in which carbene trans effects are reduced. Importantly, however, the positive impact of a strong trans-effect ligand in limiting β-H elimination is offset by its potent accelerating effect on bimolecular coupling, a major competing means of catalyst decomposition. These two decomposition pathways, known for decades to limit productivity in olefin metathesis, are revealed as distinct, antinomic, responses to a single underlying phenomenon. Reconciling these opposing effects emerges as a clear priority for design of robust, high-performing catalysts.

In ruthenium catalysts for olefin metathesis, carbene ligands of high trans influence/effect suppress decomposition via β-H elimination, but increase susceptibility to bimolecular decomposition.  相似文献   

15.
Ruthenium(IV) metallacycles derived from both ethylene and propene are reported. The propene-derived metallacycles represent the first observed examples of substituted ruthenacyclobutanes and offer new insight into the preferred stereochemical orientation about metathesis intermediates. In addition, a metallacycle possessing an unsymmetrical N-heterocyclic carbene (NHC) ligand was prepared and investigated to ascertain the dynamics of the NHC relative to the metallacycle ring. Metallacycles investigated were found to possess exchange cross-peaks between the alpha- and beta-positions in the 2D NMR, indicating a dynamic structure. The implications of these results to the mechanism of ruthenium-catalyzed olefin metathesis are discussed.  相似文献   

16.
The four‐coordinate ruthenium phosphonium alkylidenes 1‐Cy and 1‐iPr , differing in the substituent on the phosphorus center, were observed to decompose thermally in the presence of 1,1‐dichloroethylene to produce [H3CPR3][Cl]. The major ruthenium‐containing product was a trichloro‐bridged ruthenium dimer that incorporates the elements of the 1,1‐dichloroethylene as a dichlorocarbene ligand and a styrenic vinyl group on the supporting NHC ligand. Spectroscopic, kinetic, and deuterium‐labeling experiments probed the mechanism of this process, which involves a rate‐limiting C–H activation of an NHC mesityl ortho methyl group. These studies provide insight into intrinsic decomposition processes of active Grubbs type olefin metathesis catalysts, pointing the way to new catalyst design directions.  相似文献   

17.
A series of cyclic Ru-alkylidene catalysts have been prepared and evaluated for their efficiency in ring-expansion metathesis polymerization (REMP). The catalyst structures feature chelating tethers extending from one N-atom of an N-heterocyclic carbene (NHC) ligand to the Ru metal center. The catalyst design is modular in nature, which provided access to Ru complexes having varying tether lengths, as well as electronically different NHC ligands. Structural impacts of the tether length were unveiled through (1)H NMR spectroscopy as well as single-crystal X-ray analyses. Catalyst activities were evaluated via polymerization of cyclooctene, and key data are provided regarding propagation rates, intramolecular chain transfer, and catalyst stabilities, three areas necessary for the efficient synthesis of cyclic poly(olefin)s via REMP. From these studies, it was determined that while increasing the tether length of the catalyst leads to enhanced rates of polymerization, shorter tethers were found to facilitate intramolecular chain transfer and release of catalyst from the polymer. Electronic modification of the NHC via backbone saturation was found to enhance polymerization rates to a greater extent than did homologation of the tether. Overall, cyclic Ru complexes bearing 5- or 6-carbon tethers and saturated NHC ligands were found to be readily synthesized, bench-stable, and highly active catalysts for REMP.  相似文献   

18.
Various symmetrically and asymmetrically substituted N-heterocyclic carbene (NHC) ligands bearing aliphatic nitrogen-containing side groups have been synthesised. In our attempts to isolate the corresponding second-generation Grubbs catalysts, we were unsuccessful when using the symmetrical aliphatic NHC ligands. For the asymmetrical ligands bearing an aliphatic moiety on one side and an aromatic mesityl group on the other side, substitution of a phosphine ligand was achieved. The performance of a so-formed series of Ru-based metathesis initiators has been evaluated for the ring-opening metathesis polymerisation (ROMP) of cycloocta-1,5-diene and the ring-closing metathesis (RCM) of diethyl diallylmalonate.  相似文献   

19.
The 1,4-diphospha-2-azol-5-ylidene is a homologue to the Ender’s type carbene. It is a possible candidate for a ligand in the metathesis reaction of olefins. Based on density functional calculations the differences between the electronic structures of both systems are evaluated. The NHC (N-heterocyclic carbene) possesses a larger singlet–triplet energy separation than the PHC (P-heterocyclic carbene) analogue. Thus the latter exerts a larger Lewis acidity than the former. In comparison with, the donor-ability (σ-basicity) in both systems is similar. As a consequence for the PHC carbene a Ru-fragment as a ligand for catalysis is stronger bound. This causes in the olefin metathesis a lower dissociation energy (compared to the NHC analogue) with respect to the formation of the catalyst active 14el species. As a consequence, the olefin will be weaker bound as well. This can be overcome by attaching sterically demanding substituents such as mesityl or super-mesityl to the phosphorus atoms. They induce mutual steric hindrance with concomitant increase of the S–T separation of the free carbene. Thus the Lewis acidity of the carbene is reduced. On this basis for the PHC’s with larger S–T energy separations the dissociation energy of the phosphine fragment is raised and the adding olefin fragment will be stronger bound to the transition metal. While these effects describe the electronic situation in the reactive species, steric effects at the ligand carbene mediate the stabilities of the individual intermediates in the metathesis reaction by exertion of inter- and intra-ligand repulsion.  相似文献   

20.
This paper reports the synthesis and characterization of a variety of ruthenium complexes coordinated with phosphine and N-heterocyclic carbene (NHC) ligands. These complexes include several alkylidene derivatives of the general formula (NHC)(PR(3))(Cl)(2)Ru=CHR', which are highly active olefin metathesis catalysts. Although these catalysts can be prepared adequately by the reaction of bis(phosphine) ruthenium alkylidene precursors with free NHCs, we have developed an alternative route that employs NHC-alcohol or -chloroform adducts as "protected" forms of the NHC ligands. This route is advantageous because NHC adducts are easier to handle than their free carbene counterparts. We also demonstrate that sterically bulky bis(NHC) complexes can be made by reaction of the pyridine-coordinated precursor (NHC)(py)(2)(Cl)(2)Ru=CHPh with free NHCs or NHC adducts. Two crystal structures are presented, one of the mixed bis(NHC) derivative (H(2)IMes)(IMes)(Cl)(2)Ru=CHPh, and the other of (PCy(3))(Cl)(CO)Ru[eta(2)-(CH(2)-C(6)H(2)Me(2))(N(2)C(3)H(4))(C(6)H(2)Me(3))], the product of ortho methyl C-H bond activation. Other side reactions encountered during the synthesis of new ruthenium alkylidene complexes include the formation of hydrido-carbonyl-chloride derivatives in the presence of primary alcohols and the deprotonation of ruthenium vinylcarbene ligands by KOBu(t). We also evaluate the olefin metathesis activity of NHC-coordinated complexes in representative RCM and ROMP reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号