首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Method validation was conducted for an enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins, known to give amnesic shellfish poisoning (ASP) symptoms, in shellfish. The calibration curve range of the assay is approximately 10-260 pg/mL, with a dynamic working range for DA toxins in shellfish from 0.01 to at least 250 mg/kg. The ASP ELISA showed no significant cross-reactivity to structural analogs, and proved to be robust to deliberate alterations of the optimal running conditions. The shellfish matrix effects observed with mussels, oysters, and scallops were eliminated by diluting shellfish extracts 1:200 prior to analysis, leading to a limit of detection at 0.003 mg/kg. Thirteen blank shellfish homogenates were spiked with certified mussel material containing DA to levels in the range of 0.1-25 mg DA/kg, and analyzed in quadruplicate on 3 different days. The relative standard deviation (RSD) under intra-assay repeatability conditions ranged from 6.5 to 13.1%, and under interassay repeatability conditions the RSD ranged from 5.7 to 13.4%, with a mean value of 9.3%. The recoveries ranged from 85.5 to 106.6%, with a mean recovery of 102.2%. A method comparison was conducted with liquid chromatography with ultraviolet detection, using naturally contaminated scallop samples (n = 27) with DA levels at 0-244 mg/kg. The overall correlation coefficient was 0.960 and the slope of the regression was 1.218, indicating a good agreement between the methods.  相似文献   

2.
A collaborative study was conducted on the Biosense amnesic shellfish poisoning (ASP) enzyme-linked immunosorbent assay (ELISA) for the determination of domoic acid (DA) toxins in shellfish in order to obtain interlaboratory validation data for the method. In addition, a method comparison study was performed to evaluate the ASP ELISA as an alternative to the current liquid chromatography (LC) reference method for DA determination. The study material comprised 16 shellfish samples, including blue mussels, Pacific oysters, and king scallops, spiked with contaminated mussel homogenates to contain 0.1-20 mg DA/kg shellfish flesh. The shellfish samples were extracted with 50% aqueous methanol, and the supernatants were directly analyzed. Sixteen participating laboratories in 10 countries reported data from the ASP ELISA, and 4 of these laboratories also reported data from instrumental LC analysis. The participating laboratories achieved interlaboratory precision estimates for the 8 Youden paired shellfish samples in the range of 10-20% for RSD(r) (mean 14.8 +/- 4%), and 13-29% for RSDR (mean 22.7 +/- 6%). The precision estimates for the ELISA data did not show a strong dependence on the DA concentration in the study samples, and the overall precision achieved was within the acceptable range of the Horwitz guideline with HorRat values ranging from 1.1 to 2.4 (mean HorRat 1.7 +/- 0.5). The analysis of shellfish samples spiked with certified reference material (CRM)-ASP-MUS-b gave recoveries in the range of 88-122%, with an average recovery of 104 +/- 10%. The estimate on method accuracy was supported by a correlation slope of 1.015 (R2 = 0.992) for the determined versus the expected DA values. Furthermore, the correlation of the ASP ELISA results with those for the instrumental LC analyses of the same sample extracts gave a correlation slope of 1.29 (R2 = 0.984). This indicates some overestimation of DA levels in shellfish by the ELISA, but it is also a result of apparent low recoveries for the LC methods. This interlaboratory study demonstrates that the ASP ELISA is suitable for the routine determination and monitoring of DA toxins in shellfish, and that it offers a rapid and cost-effective methodology with high sample throughput.  相似文献   

3.
During 1998 and early 1999, shellfish samples from sites in Scotland were found to contain the amnesic shellfish poisoning toxin, domoic acid (DA). Two different techniques, liquid chromatography (LC) with UV diode-array detection and LC with mass spectrometric (MS) detection, were used to detect and confirm DA in shellfish extracts. The LC/UV method was validated for routine monitoring by recovery experiments on spiked mussel and scallop tissues with a certified mussel tissue used as reference material. Crude extracts of selected samples as well as extracts cleaned with strong anion exchange (SAX) were analyzed by both LC/UV and LC/MS. Good correlation (linear regression r2 = 0.996, slope = 0.93) between the 2 methods was found for cleaned extracts. Analyses of crude extracts by LC/UV produced false-positive results in 2 crab samples, whereas LC/MS analyses gave accurate results. It was concluded that LC/UV is a valid approach for routine monitoring of DA in shellfish when cleanup is performed with a SAX cartridge to prevent false positives. A variety of shellfish species were surveyed for DA content, including Pecten maximus (king scallops), Chlamys opercularis (queen scallop), Mytilus edulis (blue mussels), Cancer pugaris (crab), and Ensis ensis (razor fish). The highest concentration of DA was 105 microg/g in Pecten maximus.  相似文献   

4.
A method that uses liquid chromatography with tandem mass spectrometry (LC/MS/MS) has been developed for the highly sensitive and specific determination of amnesic shellfish poisoning toxins, diarrhetic shellfish poisoning toxins, and other lipophilic algal toxins and metabolites in shellfish. The method was subjected to a full single-laboratory validation and a limited interlaboratory study. Tissue homogenates are blended with methanol-water (9 + 1), and the centrifuged extract is cleaned up with a hexane wash. LC/MS/MS (triple quadrupole) is used for quantitative analysis with reversed-phase gradient elution (acidic buffer), electrospray ionization (positive and negative ion switching), and multiple-reaction monitoring. Ester forms of dinophysis toxins are detected as the parent toxins after hydrolysis of the methanolic extract. The method is quantitative for 6 key toxins when reference standards are available: azaspiracid-1 (AZA1), domoic acid (DA), gymnodimine (GYM), okadaic acid (OA), pectenotoxin-2 (PTX2), and yessotoxin (YTX). Relative response factors are used to estimate the concentrations of other toxins: azaspiracid-2 and -3 (AZA2 and AZA3), dinophysis toxin-1 and -2 (DTX1 and DTX2), other pectenotoxins (PTX1, PTX6, and PTX11), pectenotoxin secoacid metabolites (PTX2-SA and PTX11-SA) and their 7-epimers, spirolides, and homoYTX and YTX metabolites (45-OHYTX and carboxyYTX). Validation data have been gathered for Greenshell mussel, Pacific oyster, cockle, and scallop roe via fortification and natural contamination. For the 6 key toxins at fortification levels of 0.05-0.20 mg/kg, recoveries were 71-99% and single laboratory reproducibilities, relative standard deviations (RSDs), were 10-24%. Limits of detection were <0.02 mg/kg. Extractability data were also obtained for several toxins by using successive extractions of naturally contaminated mussel samples. A preliminary interlaboratory study was conducted with a set of toxin standards and 4 mussel extracts. The data sets from 8 laboratories for the 6 key toxins plus DTX1 and DTX2 gave within-laboratories repeatability (RSD(R)) of 8-12%, except for PTX-2. Between-laboratories reproducibility (RSDR) values were compared with the Horwitz criterion and ranged from good to adequate for 7 key toxins (HorRat values of 0.8-2.0).  相似文献   

5.
A liquid chromatography/mass spectrometry (LC/MS) method for amnesic shellfish poisoning toxins in shellfish was developed and validated. Tissue homogenate (4 g) was extracted with 16 mL methanol-water (1 + 1, v/v). Dilution into acetonitrile-water (1 + 9, v/v) was followed by C18 solid-phase extraction cleanup. Domoic acid (DA) and epi-domoic acid were determined by LC/MS/MS with electrospray ionization and multiple reaction monitoring. External calibration was performed with dilutions of a certified reference standard. Advantages of this method include speed, lower detection limits, and a very high degree of specificity. The LC/MS response was highly linear, and there were no significant interferences to the determination of DA. Formal method validation was performed on 4 shellfish species. Fortification studies gave recoveries (mean +/- SD; n = 24) of 93 +/- 14% at 1 mg/kg, and 93.3 +/- 7.6% at 20 mg/kg over all the species. Analysis of a mussel certified reference material showed the bias as < 5%. The limits of detection and quantitation were 0.15 and 0.5 mg/kg, respectively. Routine application of the method over 4 months gave a recovery for the QC sample (1 mg/kg fortified blank mussel homogenate) run with each batch of 88.9 +/- 5.5% (mean +/- SD; n = 37). The total uncertainty of measurement results were estimated as 0.12 (12%) at 0.25-5 mg/kg and 0.079 (7.9%) at 5-50 mg/kg. The major contribution to the uncertainty was the repeatability of the LC/MS determination, probably arising from subtle matrix effects.  相似文献   

6.
This paper describes a new method for sensitive, specific and direct determination of domoic acid (DA), the causative toxin of amnesic shellfish poisoning (ASP) syndrome, in shellfish. It is based on combination of hydrophilic interaction liquid chromatography with mass spectrometry (HILIC/MS). The high percentage of organic modifier in the mobile phase and the omission of ion-pairing reagents, both favoured in HILIC, result in enhanced detection limits with MS detection. The new method was set up either on an ionspray ion trap MS instrument operating in MS and MS/MS scanning acquisition modes, or on a turboionspray triple-quadrupole MS system operating in selected ion monitoring (SIM) and multiple reaction monitoring (MRM) acquisition modes. Positive and negative ion experiments were performed. MRM experiments are recommended for screening contaminated shellfish tissue and for quantitative analyses due to highest sensitivity and selectivity. The minimum detection levels for the toxin in tissue were found to be 63 and 190 ng/g in positive and negative MRM experiments, respectively, which are well below the regulatory limit for DA in tissue (20 microg/g). Application to shellfish samples collected in the Adriatic Sea (Italy) in the period 2000-2004 demonstrated for the first time in Italy the presence of DA as a new toxin that has entered the Adriatic Mytilus galloprovincialis toxin profile.  相似文献   

7.
Enzyme-linked immunosorbent assays (ELISAs) were developed for amnesic, neurotoxic, and diarrhetic shellfish poisoning (ASP, NSP, and DSP) toxins and for yessotoxin. These assays, along with a commercially available paralytic shellfish poisoning (PSP) ELISA, were used to test the feasibility of an ELISA-based screening system. It was concluded that such a system to identify suspect shellfish samples, for subsequent analysis by methods approved by international regulatory authorities, is feasible. The assays had sufficient sensitivity and can be used on simple shellfish extracts. Alcohol extraction gave good recovery of all toxin groups. The ease of ELISAs permits the ready expansion of the system to screen for other toxins, as new ELISAs become available.  相似文献   

8.
Despite ethical and technical concerns, the in vivo method, or more commonly referred to mouse bioassay (MBA), is employed globally as a reference method for phycotoxin analysis in shellfish. This is particularly the case for paralytic shellfish poisoning (PSP) and emerging toxin monitoring. A high-performance liquid chromatography method (HPLC-FLD) has been developed for PSP toxin analysis, but due to difficulties and limitations in the method, this procedure has not been fully implemented as a replacement. Detection of the diarrhetic shellfish poisoning (DSP) toxins has moved towards LC-mass spectrometry (MS) analysis, whereas the analysis of the amnesic shellfish poisoning (ASP) toxin domoic acid is performed by HPLC. Although alternative methods of detection to the MBA have been described, each procedure is specific for a particular toxin and its analogues, with each group of toxins requiring separate analysis utilising different extraction procedures and analytical equipment. In addition, consideration towards the detection of unregulated and emerging toxins on the replacement of the MBA must be given. The ideal scenario for the monitoring of phycotoxins in shellfish and seafood would be to evolve to multiple toxin detection on a single bioanalytical sensing platform, i.e. ‘an artificial mouse’. Immunologically based techniques and in particular surface plasmon resonance technology have been shown as a highly promising bioanalytical tool offering rapid, real-time detection requiring minimal quantities of toxin standards. A Biacore Q and a prototype multiplex SPR biosensor have been evaluated for their ability to be fit for purpose for the simultaneous detection of key regulated phycotoxin groups and the emerging toxin palytoxin. Deemed more applicable due to the separate flow channels, the prototype performance for domoic acid, okadaic acid, saxitoxin, and palytoxin calibration curves in shellfish achieved detection limits (IC20) of 4,000, 36, 144 and 46 μg/kg of mussel, respectively. A one-step extraction procedure demonstrated recoveries greater than 80 % for all toxins. For validation of the method at the 95 % confidence limit, the decision limits (CCα) determined from an extracted matrix curve were calculated to be 450, 36 and 24 μg/kg, and the detection capability (CCβ) as a screening method is ≤10 mg/kg, ≤160 μg/kg and ≤400 μg/kg for domoic acid, okadaic acid and saxitoxin, respectively.  相似文献   

9.
Paralytic shellfish toxins (PSTs) are produced by marine and freshwater microalgae and accumulate in shellfish including mussels, oysters, and scallops, causing possible fatalities when inadvertently consumed. Monitoring of PST content of shellfish is therefore important for food safety, with currently approved methods based on HPLC, using pre‐ or postcolumn oxidation for fluorescence detection (HPLC‐FLD). CE is an attractive alternative for screening and detection of PSTs as it is compatible with miniaturization and could be implemented in portable instrumentation for on‐site monitoring. In this study, CE methods were developed for C4D, FLD, UV absorption detection, and MS—making this first report of C4D and FLD for PSTs detection. Because most oxidized toxins are neutral, MEKC was used in combination with FLD. The developed CZE‐UV and CZE‐C4D methods provide better resolution, selectivity, and separation efficiency compared to CZE‐MS and MEKC‐FLD. The sensitivity of the CZE‐C4D and MEKC‐FLD methods was superior to UV and MS, with LOD values ranging from 140 to 715 ng/mL for CZE‐C4D and 60.9 to 104 ng/mL for MEKC‐FLD. With the regulatory limit for shellfish samples of 800 ng/mL, the CZE‐C4D and MEKC‐FLD methods were evaluated for the screening and detection of PSTs in shellfish samples. While the CZE‐C4D method suffered from significant interferences from the shellfish matrix, MEKC‐FLD was successfully used for PST screening of a periodate‐oxidized mussel sample, with results confirmed by HPLC‐FLD. This confirms the potential of MEKC‐FLD for screening of PSTs in shellfish samples.  相似文献   

10.
以石墨烯为吸附剂,制作了石墨烯-管尖固相萃取装置,结合液相色谱-串联质谱,建立了一种同时测定贝类中10种脂溶性贝类毒素的方法。实验对提取剂、石墨烯的用量、淋洗剂的种类和用量、洗脱剂的种类和用量等实验参数进行了详细优化。在最优的实验条件下,10种脂溶性贝类毒素在各自相应浓度范围内线性良好,相关系数均大于0.99,方法检出限(LOD)和定量限(LOQ)分别在0.1~1.1 μg/kg和0.3~3.2 μg/kg之间;对阴性牡蛎样品进行3个水平的加标回收实验,10种脂溶性贝类毒素的回收率在72.0%~101.2%之间,相对标准偏差小于15%。结果表明,该方法灵敏度高,操作简单高效,适用于贝类水产品中脂溶性贝类毒素的检测分析。  相似文献   

11.
Domoic acid (DA) is a naturally-occurring amino acid that causes a form of human intoxication called amnesic shellfish poisoning (ASP) following the consumption of shellfish. A rapid and sensitive HPLC-UV method has been developed for analysis of DA and analogues in shellfish without the need for SPE clean-up. Isocratic chromatographic separation of DA and its isomers from shellfish matrix interferences and from the prevalent amino acid, tryptophan, was achieved by careful control of the mobile phase pH. The optimised pH was found to be 2.5 when using a Luna(2) C18 column. Sample extraction was verified with control extracts from shellfish spiked at 5.0 and 10.0 g/g of DA and with certified reference material. The average extraction efficiency was 98.5%. The calibration, based on mussel tissue spiked with DA standard, was linear in the range 0.05–5.0 g/ml (r=0.9999) and the detection limit (signal:noise 3:1) was better than 25 ng/ml. The DA assay achieved good precision; %RSD=1.63 (intra-day, n=6) and %RSD=3.7 (inter-day, n=8). This method was successfully applied to a variety of shellfish species, allowing the rapid screening of a large number of samples per day (20–30), without the need for SPE clean-up. Quantitative data were obtained for shellfish samples containing domoic acid in the concentration range 0.25–330 g/g. Using the same chromatographic conditions, LC-MS3 was used to determine DA and its isomers, isodomoic acid D and epi-domoic acid, in scallop tissues.  相似文献   

12.
Successive unexplained shellfish toxicity events have been observed in Arcachon Bay (Atlantic coast, France) since 2005. The positive mouse bioassay (MBA) revealing atypical toxicity did not match the phytoplankton observations or the liquid chromatography-tandem mass spectrometry (LC-MS/MS) investigations used to detect some known lipophilic toxins in shellfish. The use of the three cell lines (Caco2, HepG2, and Neuro2a) allows detection of azaspiracid-1 (AZA1), okadaic acid (OA), or pectenotoxin-2 (PTX2). In this study, we proposed the cell-based assays (CBA) as complementary tools for collecting toxicity data about atypical positive MBA shellfish extracts and tracking their chromatographic fractionation in order to identify toxic compound(s). The present study was intended to investigate the responses of these cell lines to shellfish extracts, which were either control or spiked with AZA1, OA, or PTX2 used as positive controls. Digestive glands of control shellfish were extracted using the procedure of the standard MBA for lipophilic toxins and then tested for their cytotoxic effects in CBA. The same screening strategy previously used with pure lipophilic toxins was conducted for determining the intra- and inter-laboratory variabilities of the responses. Cytotoxicity was induced by control shellfish extracts whatever the cell line used and regardless of the geographical origin of the extracts. Even though the control shellfish extracts demonstrated some toxic effects on the selected cell lines, the extracts spiked with the selected lipophilic toxins were significantly more toxic than the control ones. This study is a crucial step for supporting that cell-based assays can contribute to the detection of the toxic compound(s) responsible for the atypical toxicity observed in Arcachon Bay, and which could also occur at other coastal areas.  相似文献   

13.
Amnesic shellfish poisoning (ASP) is a potentially lethal human toxic syndrome which is caused by domoic acid (DA) that originates in marine phytoplankton belonging to the Pseudonitzschia genus. A confirmatory and sensitive procedure has been developed and validated for the determination of DA in shellfish. The proposed method includes pressurised liquid extraction (PLE) with methanol/acetone (9:1), florisil clean-up purification inside the PLE extraction cell and detection by liquid chromatography (LC) coupled to electrospray ionization in positive mode tandem mass spectrometry (ESI-MS-MS). Comparison of ionization sources (ESI, atmospheric pressure ionization (APCI) atmospheric pressure photoionization (APPI) and combined APCI/APPI) were carried out in order to improve the analytical signal. The main parameters affecting the performance of the different ionization sources and PLE parameters were previously optimised using statistical design of experiments (DOE). Linear calibrations were obtained using mussel tissue extracts 0.05-5 microg DA/ml (R2>0.999). The limits of detection (LOD) and quantitation (LOQ) of the method were 0.2 and 0.5 microg/g respectively and recoveries ranged from 81 to 95%. This method was successfully applied to determine DA levels in 46 shellfish samples collected from Valencian (Spain) supermarkets, showing high sample throughput.  相似文献   

14.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of lipophilic marine toxins in shellfish extracts (mussel, oyster, cockle and clam) was validated in-house using European Union (EU) Commission Decision 2002/657/EC as a guideline. The validation included the toxins okadaic acid (OA), yessotoxin (YTX), azaspiracid-1 (AZA1), pectenotoxin-2 (PTX2) and 13-desmethyl spirolide-C (SPX1). Validation was performed at 0.5, 1 and 1.5 times the current EU permitted levels, which are 160 μg kg-1 for OA, AZA1 and PTX2 and 1,000 μg kg-1 for YTX. For SPX1, 400 μg kg-1 was chosen as the target level as no legislation has been established yet for this compound. The method was validated for determination in crude methanolic shellfish extracts and for extracts purified by solid-phase extraction (SPE). Extracts were also subjected to hydrolysis conditions to determine the performance of the method for OA and dinophysistoxin esters. The toxins were quantified against a set of matrix-matched standards instead of standard solutions in methanol. To save valuable standard, methanolic extract instead of the homogenate was spiked with the toxin standard. This was justified by the fact that the extraction efficiency is high for all relevant toxins (above 90%). The method performed very well with respect to accuracy, intraday precision (repeatability), interday precision (within-laboratory reproducibility), linearity, decision limit, specificity and ruggedness. At the permitted level the accuracy ranged from 102 to 111%, the repeatability from 2.6 to 6.7% and the reproducibility from 4.7 to 14.2% in crude methanolic extracts. The crude extracts performed less satisfactorily with respect to the linearity (less than 0.990) and the change in LC-MS/MS sensitivity during the series (more than 25%). SPE purification resulted in greatly improved linearity and signal stability during the series. Recently the European Food Safety Authority (EFSA) has suggested that to not exceed the acute reference dose the levels should be below 45 μg kg-1 OA equivalents and 30 μg kg-1 AZA1 equivalents. A single-day validation was successfully conducted at these levels. If the regulatory levels are lowered towards the EFSA suggested values, the official methods prescribed in legislation (mouse and rat bioassay) will no longer be sensitive enough. The validated LC-MS/MS method presented has the potential to replace these animal tests.  相似文献   

15.
Guo M  Tan Z  Wu H  Li Z  Zhai Y 《色谱》2012,30(3):256-261
建立了同时测定贝类中大田软海绵酸(okadaic acid, OA)及其衍生物鳍藻毒素(dinophysistoxin-1, DTX-1)、蛤毒素(pectenotoxin-2, PTX-2)和虾夷扇贝毒素(yessotoxin, YTX)的液相色谱-串联质谱分析方法。样品经甲醇提取,固相萃取柱净化,C18色谱柱分离,经含甲酸和甲酸铵的乙腈-水溶液为流动相梯度洗脱,选择反应监测(SRM)模式检测,正、负离子切换扫描,基质标准校正,外标法定量。结果表明,OA、DTX-1和YTX的线性范围为2.0~200.0 μg/L,定量限(以信噪比(S/N)≥10计)为1.0 μg/kg; PTX-2的线性范围为1.0~100.0 μg/L,定量限为0.5 μg/kg;几种化合物的添加平均回收率为83.1%~105.7%,相对标准偏差(RSD)为3.16%~9.29%。成功应用本法对黄海灵山湾海域采集的贝类样品进行了分析,发现部分样品中含有大田软海绵酸、鳍藻毒素、蛤毒素和虾夷扇贝毒素。  相似文献   

16.
A new analytical strategy was established to improve the determination and identification performance during analyses of microcystins and diarrhetic shellfish poisoning (DSP) toxins in different matrices. Automated high performance size exclusion chromatography (gel permeation chromatography, SEC) was applied for the clean-up of raw extracts from algae and mussel tissue containing either microcystins or DSP toxins. The cleaned raw extracts are well suited for the direct determination of microcystins and DSP toxins by HPLC/MS. The analyses of cleaned raw extracts containing microcystin by HPLC and UV/diode array detection (DAD) revealed chromatograms without interfering peaks. Additionally, methods for the identification of unknown microcystins and those not available as standards were developed and established. The proposed strategy is exemplarily demonstrated for the analyses of a natural algae community from a lake in Slowakia and a naturally contaminated mussel from Portugal.  相似文献   

17.
A single-laboratory validation is reported for an LC/MS/MS quantification of six brevetoxins in four matrixes (Greenshell mussel, eastern oyster, hard clam, and Pacific oyster). Recovery and precision data were collected from seven analytical batches using shellfish flesh at 0.05 mg/kg. Method recoveries and within-laboratory reproducibility ranged from 73 to 112%, with an RSD between 14 and 18% for brevetoxin-3, brevetoxin B5, brevetoxin B2, and S-desoxy brevetoxin B2. The recovery and within-laboratory reproducibility for brevetoxin-2 was 61%, with an RSD of 27%. Brevetoxin B1 gave an RSD of 12%, but no reference material was available and this toxin was only recorded in a hard clam sample naturally contaminated with brevetoxins. One naturally contaminated sample of each shellfish matrix, with brevetoxin levels ranging from 0.012 to 9.9 mg/kg, was tested in multiple batches, and the RSDs were similar to those for fortified samples at 0.05 mg/kg. Comparisons with limited data for the neurotoxic shellfish poisoning mouse bioassay for four naturally contaminated shellfish samples showed that the regulatory action limit of 0.8 mg/kg is conservative with respect to the bioassay regulatory limit of 20 mouse units/100 g.  相似文献   

18.
Azaspiracid (AZA1), a recently discovered marine toxin, is responsible for the new human toxic syndrome, azaspiracid poisoning (AZP), which is caused by the consumption of contaminated shellfish. A new, sensitive liquid chromatography/mass spectrometry (LC/MS) method has been developed for the determination of AZA1 and its analogues, 8-methylazaspiracid (AZA2) and 22-demethylazaspiracid (AZA3). Separation of these toxins was achieved using reversed-phase LC and coupled, via an electrospray ionisation (ESI) source, to an ion-trap mass spectrometer. Spectra showed the protonated molecules, [M + H]+, and their major product ions, due to the sequential loss of two water molecules, [M + H - H2O]+, [M + H - 2H2O]+, in addition to fragment ions that are characteristic of these cyclic polyethers. A highly specific and sensitive LC/MS(3) analytical method was developed and, using shellfish extracts containing AZA1, the detection limit (S/N = 3) was 4 pg on-column, corresponding to 0.8 ng/mL. Using the protocol presented here, this is equivalent to 0.37 ng/g shellfish tissue and good linear calibrations were obtained for AZA1 in shellfish extracts (average r2 = 0.9988). Good reproducibility was achieved with % RSD values (N = 5) ranging from 1.5% (0.75 microg/mL) to 4.2% (0.05 microg/mL). An efficient procedure for the extraction of toxins from shellfish aided the development of a rapid protocol for the determination of the three predominant azaspiracids.  相似文献   

19.
A new analytical strategy was established to improve the determination and identification performance during analyses of microcystins and diarrhetic shellfish poisoning (DSP) toxins in different matrices. Automated high performance size exclusion chromatography (gel permeation chromatography, SEC) was applied for the clean-up of raw extracts from algae and mussel tissue containing either microcystins or DSP toxins. The cleaned raw extracts are well suited for the direct determination of microcystins and DSP toxins by HPLC/MS. The analyses of cleaned raw extracts containing microcystin by HPLC and UV/diode array detection (DAD) revealed chromatograms without interfering peaks. Additionally, methods for the identification of unknown microcystins and those not available as standards were developed and established. The proposed strategy is exemplarily demonstrated for the analyses of a natural algae community from a lake in Slowakia and a naturally contaminated mussel from Portugal. Received: 23 July 1999 / Revised: 9 September 1999 / Accepted: 16 September 1999  相似文献   

20.
Okadaic acid (OA) and dinophysistoxins-1 and -2 (DTX1, DTX2), the toxins responsible for incidents of diarrhetic shellfish poisoning (DSP), can occur as complex mixtures of ester derivatives in both plankton and shellfish. Alkaline hydrolysis is usually employed to release parent OA/DTX toxins, and analyses are conducted before and after hydrolysis to determine the concentrations of nonesterified and esterified toxins. Recent research has shown that other toxins, including pectenotoxins and spirolides, can also exist as esters in shellfish, but these toxins cannot survive alkaline hydrolysis. A promising alternative approach is enzymatic hydrolysis. In this study, two enzymatic methods were developed for the hydrolysis of 7-O-acyl esters, “DTX3,” and the carboxylate esters of OA, “diol-esters.” Porcine pancreatic lipase induced complete conversion of DTX3 to OA and DTXs within one hour for reference solutions. The presence of mussel tissue matrix reduced the rate of hydrolysis, but an optimized lipase concentration resulted in greater than 95% conversion within four hours. OA-diol-ester was hydrolyzed by porcine liver esterase and was completely converted to OA in less than 30 min, even in the presence of mussel tissue matrix. Esters and OA/DTX toxins were all monitored by LC–MS. Further experiments with pectenotoxin esters indicated that enzymatic hydrolysis could also be applied to esters of other toxins. Enzymatic hydrolysis has excellent potential as an alternative to the conventional alkaline hydrolysis procedure used in the preparation of shellfish samples for the analysis of toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号