首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

2.
Controlling the reactivity of transition metals using secondary, σ‐accepting ligands is an active area of investigation that is impacting molecular catalysis. Herein we describe the phosphine gold complexes [(o‐Ph2P(C6H4)Acr)AuCl]+ ([ 3 ]+; Acr=9‐N‐methylacridinium) and [(o‐Ph2P(C6H4)Xan)AuCl]+ ([ 4 ]+; Xan=9‐xanthylium) where the electrophilic carbenium moiety is juxtaposed with the metal atom. While only weak interactions occur between the gold atom and the carbenium moiety of these complexes, the more Lewis acidic complex [ 4 ]+ readily reacts with chloride to afford a trivalent phosphine gold dichloride derivative ( 7 ) in which the metal atom is covalently bound to the former carbocationic center. This anion‐induced AuI/AuIII oxidation is accompanied by a conversion of the Lewis acidic carbocationic center in [ 4 ]+ into an X‐type ligand in 7 . We conclude that the carbenium moiety of this complex acts as a latent Z‐type ligand poised to increase the Lewis acidity of the gold center, a notion supported by the carbophilic reactivity of these complexes.  相似文献   

3.
Six metal carbido-carbonyl clusters have been isolated and recognized as members of a multivalent family based on the dioctahedral Rh(10)(C)(2) frame, with variable numbers of CO ligands, AuPPh(3) moieties, and anionic charge: [Rh(10)(C)(2)(CO)(x)(AuPPh(3))(y)](n-) (x = 18, 20; y = 4, 5, 6; n = 0, 1, 2). Anions [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](-) ([2](-)) and [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)](2-) ([2](2-)) have been obtained by the reduction of [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(4)] (2) under N(2), while [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(5)](-) ([3](-)) was obtained from [Rh(10)(C)(2)(CO)(20)(AuPPh(3))(4)] (1) by reduction under a CO atmosphere. [3](-) can be better obtained by the addition of AuPPh(3)Cl to [2](2-). [Rh(10)(C)(2)(CO)(18)(AuPPh(3))(6)] (4) is obtained from [3](-) and 2 as well by the reduction and subsequent addition of AuPPh(3)Cl. The molecular structures of [2](2-) ([NBu(4)](+) salt), [3](-) ([NMe(4)](+) salt), and 4 have been determined by single-crystal X-ray diffraction. The redox activities of complexes 1, 2 and [3](-) have been investigated by electrochemical and electron paramagnetic resonance (EPR) techniques. The data from EPR spectroscopy have been accounted for by theoretical calculations.  相似文献   

4.
Treatment of [RuCl(2)(DMSO)(4)] with 2-aminoethanethiol (Haet) in ethanol gave a dicationic triruthenium complex, [Ru[Ru(aet)(3)](2)]Cl(2) ([1]Cl(2)). Complex [1]Cl(2) was also obtained by treatment of RuCl(3).nH(2)O with excess Haet in water. When [1](2+) was chromatographed on a cation-exchange column of SP-Sephadex C-25, meso (DeltaLambda) and racemic (DeltaDelta/LambdaLambda) isomers of the corresponding tricationic complex, [Ru[Ru(aet)(3)](2)](3+) ([2](3+)), were eluted with aqueous NaNO(3). The racemic isomer of [2](3+) was optically resolved into DeltaDelta and LambdaLambda isomers by using [Sb(2)(R,R-tartrato)(2)](2-) as a resolving agent. The molecular structures of DeltaLambda- and DeltaDelta/LambdaLambda-[2](NO(3))(3) were determined by X-ray crystallography. In these complexes, the central Ru atom is coordinated by six thiolato groups from two terminal fac-(S)-[Ru(aet)(3)] units in an octahedral geometry, forming a linear-type S-bridged triruthenium structure. The spectroelectrochemical studies on the electronic absorption and CD spectra, together with the electrochemical studies, demonstrated that [1](2+) and [2](3+) are interconvertible with each other through a one-electron redox process, retaining the chirality of the triruthenium structure. Their electronic structures were investigated on the basis of EPR and magnetic susceptibility measurements, which indicated that [1](2+) and [2](3+) have spin ground states of S(t) = 0 and S(t) = 1/2, respectively. The corresponding L-cysteinato complex, [Ru[Ru(L-cys-N,S)(3)](2)](3-), which was formed from RuCl(3).nH(2)O and excess L-cysteine (L-H(2)cys) in water followed by air oxidation, is also presented.  相似文献   

5.
Aluminium alkyl complexes [(OSSO)AlR](1-3: R = Me, Et) were isolated in good yields from the protonolysis reaction of AlR3 with the corresponding tetradentate 1,omega-dithiaalkanediyl-bridged bisphenols (1,4-dithiabutanediyl-bis(6-tert-butyl-4-methylphenol), etbmpH2; ortho-xylylenedithio-bis(6-tert-butyl-4-methylphenol), xytbmpH2). The monomeric structures of all three complexes were confirmed by X-ray diffraction studies. Complexes 1 and 2 have an isotypic packing arrangement. The aluminium center is coordinated by the etbmp ligand and one alkyl group with distorted trigonal bipyramidal geometry. Complex 3 shows Cs symmetry with square pyramidal geometry around the metal center. Substitution reaction of complex 1 with trityl alcohol gave the monomeric alkoxide complex [(etbmp)Al(OCPh3)] 4, which has a similar trigonal bipyramidal geometry around the aluminium atom as complex 1. In the presence of isopropanol, complexes 1-3 initiated the living ring-opening polymerization of rac-lactide (PDI = 1.03-1.06, Mw/Mn). The ligand structure influenced the tacticity of the obtained polymer, with complex 3 giving heterotactic-enriched polylactides.  相似文献   

6.
The new ruthenium complex [Ru(terpy)(dcbpy)(Hmte)](PF(6) )(2) ([2](PF(6) )(2) ; dcbpy=6,6'-dichloro-2,2'-bipyridine, terpy=2,2';6',2"-terpyridine, Hmte=2-(methylthio)ethanol) was synthesized. In the crystal structure, this complex is highly distorted, revealing steric congestion between dcbpy and Hmte. In water, [2](2+) forms spontaneously by reacting Hmte and the aqua complex [Ru(terpy)(dcbpy)(OH(2) )](2+) ([1](2+) ), with a second-order rate constant of 0.025?s(-1) M(-1) at 25?°C. In the dark, the Ru?S bond of [2](2+) is thermally unstable and partially hydrolyzes; in fact, [1](2+) and [2](2+) are in an equilibrium characterized by an equilibrium constant K of 151?M(-1) . When exposed to visible light, the Ru?S bond is selectively broken to release [1](2+) , that is, the equilibrium is shifted by visible-light irradiation. The light-induced equilibrium shifts were repeated four times without major signs of degradation; the Ru?S coordination bond in [2](2+) can be described as a robust, light-sensitive, supramolecular bond in water. To demonstrate the potential of this system in supramolecular chemistry, a new thioether-cholesterol conjugate (4), which inserts into lipid bilayers through its cholesterol moiety and coordinates to ruthenium through its sulfur atom, was synthesized. Thioether-functionalized, anionic, dimyristoylphosphatidylglycerol (DMPG), lipid vesicles, to which aqua complex [1](2+) efficiently coordinates, were prepared. Upon exposure of the Ru-decorated vesicles to visible light, the Ru?S bond is selectively broken, thus releasing [1](2+) that stays at the water-bilayer interface. When the light is switched off, the metal complex spontaneously coordinates back to the membrane-embedded thioether ligands without a need to heat the system. This process was repeated four times at 35?°C, thus achieving light-triggered hopping of the metal complex at the water-bilayer interface.  相似文献   

7.
The molecular electron densities of structurally related cationic ([(κ(2)-3-P(i)Pr(2)-2-NMe(2)-indene)Rh(COD)](CF(3)SO(3)), [1c](CF(3)SO(3))) and formally zwitterionic ([(κ(2)-3-P(i)Pr(2)-2-NMe(2)-indenide)Rh(COD)], 1z) complexes were accurately determined using synchrotron bright-source X-ray radiation at 30 K followed by multipolar refinement (COD = η(4)-1,5-cyclooctadiene). The densities were also obtained from density functional theory calculations with a large, locally dense basis set. A 28-electron ([Ar]3d(10)) core of the Rh atom was modeled by an effective core potential to obtain a density that was then augmented with relativistic cores according to the Keith-Frisch approximation. Calculations were performed at the experimental geometry and after vacuum-phase geometry optimization starting from the experimental geometry. Experimental and calculated geometries and electron-density distributions show that the electron density and electronic structure in the region of the Rh center are not significantly altered by protonation of the aromatic ring and that formal removal of CF(3)SO(3)H from [1c](CF(3)SO(3)) affords a complex 1z possessing substantial zwitterionic character (with a charge separation of ca. 0.9 electronic charge) featuring a negatively charged aromatic indenide framework. Further, the molecular electrostatic potentials of 1c and 1z exhibit similar topography around the metal, despite being drastically different in the vicinity of the indene or indenide portion of the cation (1c) and zwitterion (1z), respectively. Collectively, these observations obtained from high-level experimental and theoretical electron-density analysis confirm, for the first time, that appropriately designed zwitterionic complexes can effectively emulate the charge distribution found within ubiquitous cationic platinum-group metal catalyst complexes, in keeping with recent catalytic investigations.  相似文献   

8.
Novel anionic dialkyl, diaryl, and dihydride platinum(II) complexes based on the new "long-arm" hemilabile PCN-type ligand C6H4[CH2P(tBu)2](CH2)2N(CH3)2 with the general formula Li+[Pt(PCN)(R)2]- (R=Me (4), Ph (6) and H (9)) were prepared by reaction of [Pt(PCN)(R)] complexes (obtained from the corresponding chlorides) with an equivalent of RLi, as a result of the opening of the chelate ring. Alkylating agents based on other metals produce less stable products. These anionic d8 complexes are thermally stable although they bear no stabilizing pi acceptors. They were characterized by 1H, 31P[1H], 13C, and 7Li NMR spectroscopy; complex 9 was also characterized by single crystal X-ray crystallography, showing that the Li+ ion is coordinated to the nitrogen atom of the open amine arm and to the hydride ligand (trans to the P atom) of a neighboring molecule (H--Li=2.15 A), resulting in a dimeric structure. Complexes 4 and 9 exhibit high nucleophilic reactivity, upon which the pincer complex is regenerated. Reaction of 4 with water, methyl iodide, and iodobenzene resulted in the neutral complex [Pt(PCN)(CH3)] (3) and methane, ethane, or toluene, respectively. Labeling studies indicate that the reaction proceeds by direct electrophilic attack on the metal center, rather than attack on the alkyl ligand. The anionic dihydride complex 9 reacted with water and methyl iodide to yield [Pt(PCN)(H)] (8) and H2 or methane, respectively.  相似文献   

9.
The synthesis of two organogold(I) complexes, [(Au(NCN))2(dppbp)] (6) and [(Au(Phebox))2(dppbp)] (9), and their application in subsequent transmetalating reactions are described. A trinuclear organogold(I) complex, [(AuCl)3(tdpppb)] (4) is also reported, which exhibits a surprisingly high solubility in dichloromethane. It was found that 6 and 9 can cleanly transfer the anionic NCN-([C(6)H(3)(CH(2)NMe(2))2-2,6]-) or Phebox-([2,6-bis(oxazolinyl)phenyl]-) moiety to Ti(IV) and Pd(II) centers, respectively. The coproduct [(AuCl)2(dppbp)] (3, dppbp is [4-Ph(2)PC(6)H(4)]2 (1)) formed during this transmetalation reaction, precipitates almost quantitatively from the reaction mixture (toluene) and can thus be separated by simple filtration. In comparison, [AuCl(PPh3)], formed as the coproduct in the transmetalation reaction of [Au(NCN)(PPh3)] with metal salts, has a higher solubility in apolar solvents and thus is more difficult to separate from the resultant organometallic complex. Digold complex 6 has been characterized by NMR spectroscopy and crystallographic analyses. These analyses show that the two gold units are essentially independent. The formation of a dimetallic transmetalating agent based on gold(I) had no effect on its transmetalating properties.  相似文献   

10.
The synthesis and reactivity of coordinatively unsaturated Rh and Ir complexes supported by the new bis(phosphino)silyl pincer ligand [kappa(3)-(2-Cy(2)PC(6)H(4))(2)SiMe](-) ([Cy-PSiP](-)) are reported, including the first example of facile, room temperature intermolecular arene C-H bond activation mediated by a silyl pincer complex.  相似文献   

11.
The N-heterocyclic carbene (NHC) precursor, 1-methyl-3-(2-pyridinylmethyl)-1H-imidazolium tetrafluoroborate, [HCH3im(CH2py)]BF4, reacted with AgBF4 in the presence of aqueous NaOH to produce the silver complex [Ag(CH3im(CH2py))2]BF4 (1) which was then reacted with Au(tht)Cl to form the corresponding gold(I) complex, [Au(CH3im(CH2py))2]BF4 (2). Complex 2 reacted with 1 equiv of AgBF4 to produce the mixed-metal species [AuAg(CH3im(CH2py))2](BF4)2 (3). The reaction of 2 with 1 equiv of Au(tht)Cl followed by metathesis with NaBF4 produces the dimetallic gold complex [Au2(CH3im(CH2py))2](BF4)2 (4). The reaction of [Ag(CH3im(CH2py))2]BF4 (1) with 1 equiv of AgBF4 produces the trinuclear [Ag3(CH3im(CH2py))3(NCCH3)2](BF4)3 (5) complex, which appears to dissociate into a dimetallic complex in solution. Complexes 1-5 were characterized by 1H NMR, 13C NMR, UV-vis, luminescence spectroscopy, elemental analysis, mass spectrometry, and X-ray crystallography. The CH3im(CH2py) ligands in 3 are arranged in a head-to-head fashion spanning a Au-Ag separation of 3.0318(5) A with the carbene portion of the ligand remaining coordinated to the Au(I) center. In 4, the ligands are arranged in a head-to-tail fashion with an Au-Au separation of 3.1730(5) A. In 5, the ligands bridge the nearly symmetrical Ag3 triangular core with short Ag-Ag separations of 2.7765(8), 2.7832(8), and 2.7598(8) A. All of these complexes, including the ligand precursor, are intensely luminescent in solution and the solid state.  相似文献   

12.
A monomeric aluminum hydride complex bearing substituted pyrrolyl ligands, AlH[C(4)H(3)N(CH(2)NMe(2))-2](2) (1), was synthesized and structurally characterized. To further confirm the presence of Al--H bonds, the compound AlD[C(4)H(3)N(CH(2)NMe(2))-2](2) ([D]1) was synthesized by reacting LiAlD(4) with [C(4)H(4)N(CH(2)NMe(2))-2]. Compound 1 and [D]1 react with phenyl isothiocyanate yielding Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCHNPh] (2) and Al[C(4)H(3)N(CH(2)NMe(2))-2](2)[eta(3)-SCDNPh] ([D]2) by insertion. The reactions of 1 with 9-fluorenone and benzophenone generated the unusual aluminum alkoxide complexes 3 and 4, respectively, through intramolecular proton abstraction and C-C coupling. A mechanistic study shows that 9-fluorenone coordinates to [D]1 and releases one equivalent of HD followed by C-C coupling and hydride transfer to yield the final product. Reduction of benzil with 1 affords aluminum enediolate complex 5 in moderate yield. Mechanistic studies also showed that the benzil was inserted into the aluminum hydride bond of [D]1 through hydroalumination followed by proton transfer to generate the final product [D]5. All new complexes have been characterized by (1)H and (13)C NMR spectroscopy and X-ray crystallography.  相似文献   

13.
Divalent and trivalent nickel complexes of 1,4,8,11-tetraazacyclotetradecane, denoted as cyclam hereafter, coordinated by methyl coenzyme M (MeSCoM(-)) and coenzyme M (HSCoM(-)) have been synthesized in the course our model studies of methyl coenzyme M reductase (MCR). The divalent nickel complexes Ni(cyclam)(RSCoM)(2) (R = Me, H) have two trans-disposed RSCoM(-) ligands at the nickel(II) center as sulfonates, and thus, the nickels have an octahedral coordination. The SCoM(2-) adduct Ni(cyclam)(SCoM) was also synthesized, in which the SCoM(2-) ligand chelates the nickel via the thiolate sulfur and a sulfonate oxygen. The trivalent MeSCoM adduct [Ni(cyclam)(MeSCoM)(2)](OTf) was synthesized by treatment of [Ni(cyclam)(NCCH(3))(2)](OTf)(3) with ((n)Bu(4)N)[MeSCoM]. A similar reaction with ((n)Bu(4)N)[HSCoM] did not afford the corresponding trivalent HSCoM(-) adduct, but rather the divalent nickel complex polymer [-Ni(II)(cyclam)(CoMSSCoM)-](n) was obtained, in which the terminal thiol of HSCoM(-) was oxidized to the disulfide (CoMSSCoM)(2-) by the Ni(III) center.  相似文献   

14.
A new family of hydroxytris(pentafluorophenyl)borate anions [B(C6F5)3OH](-) associated with organic and aprotic cations c+ (imidazolium, pyrrolidinium and phosphonium) has been prepared by a general one-pot synthesis that implies the chloride borate analogues [B(C6F5)3Cl](-)[c]+. The [c]+[B(C6F5)3OH](-) salts have been isolated and fully characterized. The borate anion [B(C6F5)3OH](-) has been shown to protonate the Zr-Me bond in the Cp2ZrMe2 complex forming CH4 and the first published example of anionic [Cp2Zr(Me)OB(C6F5)3](-) species. Standard spectroscopic methods demonstrate the covalent character of the Zr metal center and the anionic character of the boron atom. This protonolysis methodology using [B(C6F5)3OH](-) anion affords a new route for the incorporation of a covalently bonded anionic functionality on organometallic complexes. This provides a new way to immobilize transition metal complexes in ionic liquids.  相似文献   

15.
The benzene-o-dithiol/catechol ligands H4-2 and H4-3 react with [TiO(acac)2] to give the dinuclear, double-stranded anionic complexes [Ti2(L)2(mu-OCH3)2](2-) ([22](2-), L=2(4-); [23](2-), L=3(4-)). NMR spectroscopic investigations reveal that the complex anion [Ti2(2)2(mu-OCH3)(2)](2-) is formed as a mixture of three of four possible isomers/pairs of enantiomers, whereas only one isomer of the complex anion [Ti2(3)2(mu-OCH3)(2)](2-) is obtained. The crystal structure analysis of (PNP)2[Ti2(3)2(mu-OCH3)2] shows a parallel orientation of the ligand strands, whereas the structure determination for (AsPh4)2[Ti2(2)2(mu-OCH3)2] does not yield conclusive results about the orientation of the ligand strands due the presence of different isomers in solution, the possible co-crystallisation of different isomers and severe disorder in the crystal. NMR spectroscopy shows that ligand H4-3 reacts at elevated temperature with [TiO(acac)2] to give the triple-stranded helicate (PNP)4[Ti2(3)3] ((PNP)4[24]) as a mixture of two isomers, one with a parallel orientation of the ligand strands and one with an antiparallel orientation. Exclusively the triple-stranded helicates [Ti2(L)(3)](4-) ([25](4-), L=1(4-); [26](2-), L=4(4-)) are formed in the reaction of ligands H4-1 and H4-4 with [TiO(acac)2]. The molecular structures of Na(PNP)3[Ti2(1)3]CH(3)OHH(2)OEt(2)O (Na(PNP)3[25]CH(3)OHH(2)OEt(2)O) and Na(1.5)(PNP)(6.5)[Ti2(4)3]2.3 DMF (Na(1.5)(PNP)(6.5)[26]2.3 DMF) reveal a parallel orientation of the ligand strands in both complexes, which is retained in solution. The sodium cations present in the crystal structures lead to two different kinds of aggregation in the solid state. Na-[25]-Na-[25]-Na polymeric chains are formed from compound Na(PNP)3[25], with the sodium cations coordinated by the carbonyl groups of two ligand strands from two different [Ti2(1)3](4-) ions in addition to solvent molecules. In contrast to this, two [Ti2(4)3](4-) ions are connected by a sodium cation that is coordinated by the three meta oxygen atoms of the catecholato groups of each complex tetraanion to form a central {NaO6} octahedron in the anionic pentanuclear complex {[26]-Na-[26]}(7-).  相似文献   

16.
4,5-Bis(terpyridyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (btpyxa) was prepared to serve as a new bridging ligand via Suzuki coupling of terpyridin-4'-yl triflate and 2,7-di-tert-butyl-9,9-dimethylxanthene-4,5-diboronic acid. The reaction of btpyxa with either 1 equiv or an excess of PtCl(2)(cod) (cod = 1,5-cyclooctadiene) followed by anion exchange afforded mono- and dinuclear platinum complexes [(PtCl)(btpyxa)](PF(6)) ([1](PF(6))) and [(PtCl)(2)(btpyxa)](PF(6))(2) ([2](PF(6))(2)), respectively. The X-ray crystallography of [1](PF(6)).CHCl(3) revealed that the two terpyridine units in the ligand are nearly parallel to each other. The heterodinuclear complex [(PtCl)[Ru((t)Bu(2)SQ)(dmso)](btpyxa)](PF(6))(2) ([4](PF(6))(2)) (dmso = dimethyl sulfoxide; (t)Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) and the monoruthenium complex [Ru((t)Bu(2)SQ)(dmso)(trpy)](PF(6)) ([5](PF(6))) (trpy = 2,2':6',2' '-terpyridine) were also synthesized. The CV of [2](2+) suggests possible electronic interaction between the two Pt(trpy) groups, whereas such an electronic interaction was not suggested by the CV of [4](2+) between Pt(trpy) and Ru((t)Bu(2)SQ) frameworks.  相似文献   

17.
Three iron complexes of a pentadentate ligand N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide (PaPy(3)H, H is the dissociable amide proton) have been synthesized. All three species, namely, two nitrosyls [(PaPy(3))Fe(NO)](ClO(4))(2) (2) and [(PaPy(3))Fe(NO)](ClO(4)) (3) and one nitro complex [(PaPy(3))Fe(NO(2))](ClO(4)) (4), have been structurally characterized. These complexes provide the opportunity to compare the structural and spectral properties of a set of isostructural [Fe-NO](6,7) complexes (2 and 3, respectively) and an analogous genuine Fe(III) complex with an "innocent" sixth ligand ([(PaPy(3))Fe(NO(2))](ClO(4)), 4). The most striking difference in the structural features of 2 and 3 is the Fe-N-O angle (Fe-N-O = 173.1(2) degrees in the case of 2 and 141.29(15) degrees in the case of 3). The clean (1)H NMR spectrum of 2 in CD(3)CN reveals its S = 0 ground state and confirms its [Fe-NO](6) configuration. The binding of NO at the non-heme iron center in 2 is completely reversible and the bound NO is photolabile. M?ssbauer data, electron paramagnetic resonance signal at g approximately 2.00, and variable temperature magnetic susceptibility measurements indicate the S = (1)/(2) spin state of the [Fe-NO](7) complex 3. Analysis of the spectroscopic data suggests Fe(II)-NO(+) and Fe(II)-NO(*) formulations for 2 and 3, respectively. The bound NO in 3 does not show any photolability. However, in MeCN solution, it reacts rapidly with dioxygen to afford the nitro complex 4, which has also been synthesized independently from [(PaPy(3))Fe(MeCN)](2+) and NO(2)(-). Nucleophilic attack of hydroxide ion to the N atom of the NO ligand in 2 in MeCN in the dark gives rise to 4 in high yield.  相似文献   

18.
Cyclometalated ruthenium complexes having C(∧)N and N(∧)C type coordinating ligands with NAD(+)/NADH function have been synthesized and characterized by spectroscopic methods. The variation of the coordinating position of σ-donating carbon atom leads to a drastic change in their properties. Both the complex Ru(phbn)(phen)(2)]PF(6) ([1]PF(6)) and [Ru(pad)(phen)(2)]PF(6) ([2]PF(6)) reduced to Ru(phbnHH)(phen)(2)]PF(6) ([1HH]PF(6)) and [Ru(padHH)(phen)(2)]PF(6) ([2HH]PF(6)) by chemical and electrochemical methods. Complex [1]PF(6) photochemically reduced to [1HH]PF(6) in the presence of the sacrificial agent triethylamine (TEA) upon irradiation of visible light (λ ≥ 420 nm), whereas photochemical reduction of [2]PF(6) was not successful. Both experimental results and theoretical calculations reveal that upon protonation the energy level of the π* orbital of either of the ligands phbn or pad is drastically stabilized compared to the nonprotonated forms. In the protonated complex [Ru(padH)(phen)(2)](PF(6))(2) {[2H](PF(6))(2)}, the Ru-C bond exists in a tautomeric equilibrium with Ru═C coordination and behaves as a remote N-heterocyclic carbene (rNHC) compex; on the contrary, this behavior could not be observed in protonated complex [Ru(phbnH)(phen)(2)](PF(6))(2) {[1H](PF(6))(2)}.  相似文献   

19.
A range of hydridosilicate anions has been prepared and characterised by spectroscopic, structural and computational methods. The general approach involved reaction of KH with a neutral silane precursor in the presence of [18]crown-6. In this manner, [K([18]crown-6)]+ salts of [Ph3SiH2](-) (1), [Ph3SiF2](-) (9), and [(p-FC6H4)3SiHF](-)/[(p-FC6H4)3SiH2](-) (12) were stabilised and characterized by NMR spectroscopy and X-ray diffraction. In each case, the anion adopts a trigonal bipyramidal (TBP) geometry with three equatorial phenyl groups eclipsing the axial Si-H/Si-F bonds. The Si-H[dot dot dot]K distances, along with DFT calculations on 1, indicate an electrostatic interaction that does not dictate the geometry adopted by the anion. A [H2SiOiPr3](-) salt (7) has also been crystallised in the same way; X-ray diffraction shows in this case a distorted TBP array with axial hydride ligands, and both Si-H[...]K and Si-O[...]K interactions. 1H NMR exchange experiments show 1 to undergo facile hydride exchange with Ph3SiH. Compound 1 acts as a good hydride transfer reagent to a variety of substrates, but its high reactivity often results in redistribution and other side reactions.  相似文献   

20.
A large number of complexes of the first-row transition metals with non-innocent ligands has been characterized in the last few years. The localization of the oxidation site in such complexes can lead to discrepancies when electrons can be removed either from the metal center (leading to an M((n+1)+) closed-shell ligand) or from the ligand (leading to an M(n+) open-shell ligand). The influence of the ligand field on the oxidation site in square-planar nickel complexes of redox-active ligands is explored herein. The tetradentate ligands employed herein incorporate two di-tert-butylphenolate (pro-phenoxyl) moieties and one orthophenylenediamine spacer. The links between the spacer and both phenolates are either two imines ([Ni(L1)]), two amidates ([Ni(L3)]2-), or one amidate and one imine ([Ni(L2)]-). The structure of each nickel(II) complex is presented. In the noncoordinating solvent CH2Cl2, the one-electron-oxidized forms are ligand-radical species with a contribution from a singly occupied d orbital of the nickel. In the presence of an exogenous ligand, such as pyridine, a Ni(III) closed-shell ligand form is favored: axial ligation, which stabilizes the trivalent nickel in its octahedral geometry, induces an electron transfer from the metal(II) center to the radical ligand. The affinity of pyridine for the phenoxylnickel(II) species is correlated to the N-donor ability of the linkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号