首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A method for the determination of some pesticide residues in must and wine samples was developed using solid-phase microextraction (SPME) and gas chromatography-electron capture detection (GC/ECD). The procedure only needs dilution as sample pre-treatment and is therefore simple, fast and solvent-free. Eight fungicides (vinclozolin, procymidone, iprodione, penconazole, fenarimol, folpet, nuarimol and hexaconazole), one insecticide (chlorpyriphos) and two acaricides (bromopropylate and tetradifon) can be quantified. Good linearity was observed for all the compounds in the range 5-100 microg/L. The reproducibility of the measurements was found acceptable (with RSD's below 20%). Detection limits of 11 microg/L, on average, are sufficiently below the proposed maximum residue limits (MRL's) for these compounds in wine. The analytical method was applied to the determination of these compounds in Portuguese must and wine samples from the Demarcated Region of Alentejo, where any residues could be detected.  相似文献   

2.
A method for the determination of some pesticide residues in must and wine samples was developed using solid-phase microextraction (SPME) and gas chromatography – electron capture detection (GC/ECD). The procedure only needs dilution as sample pre-treatment and is therefore simple, fast and solvent-free. Eight fungicides (vinclozolin, procymidone, iprodione, penconazole, fenarimol, folpet, nuarimol and hexaconazole), one insecticide (chlorpyriphos) and two acaricides (bromopropylate and tetradifon) can be quantified. Good linearity was observed for all the compounds in the range 5–100 μg/L. The reproducibility of the measurements was found acceptable (with RSD’s below 20%). Detection limits of 11 μg/L, on average, are sufficiently below the proposed maximum residue limits (MRL’s) for these compounds in wine. The analytical method was applied to the determination of these compounds in Portuguese must and wine samples from the Demarcated Region of Alentejo, where any residues could be detected.  相似文献   

3.
In the present study the main factors that may influence the headspace single-drop microextraction (HS-SDME) of common pesticide contaminants (diazinon, lindane, chlorpyrifos ethyl, p,p′-DDE, and endosulfan) that may occur in honey were determined and an analytical protocol was further developed by the use of a multivariate optimization. The HS-SDME analytical method developed and two more analytical protocols for the determination of pesticides in honey: (i) by direct SDME (D-SDME), and (ii) by liquid–liquid extraction (LLE), were further validated for the determination of target analytes. The three methods were also applied in the same real honey samples and results were further discussed. By D-SDME, LODs ranged from 0.04?µg?kg?1 for β-endosulfan to 2.40?µg?kg?1 for diazinon and repeatability expressed as %RSD from 3 for lindane to 15 for diazinon and chlorpyrifos methyl; by HS-SDME, LODs ranged from 0.07?µg?kg?1 for p,p′-DDE to 12.54?µg?kg?1 for chlorpyrifos methyl and repeatability expressed as %RSD from 11 for chlorpyrifos methyl to 19 for p,p′-DDE; by LLE, LODs ranged from 0.09?µg?kg?1 for β-endosulfan to 19.31?µg?kg?1 for diazinon and repeatability expressed as %RSD from 6 for p,p′-DDE to 11 for lindane. For all target pesticides but p,p′-DDE that could not be recovered by D-SDME method tested. The proposed HS-SDME optimized in this study was shown to be the method of choice for the determination of diazinon in honey whereas the most favourable analytical characteristics from the comparative study performed were achieved by D-SDME.  相似文献   

4.
气相色谱-质谱法分析蜂蜜中的多种农药残留   总被引:2,自引:0,他引:2  
开展了蜂蜜中23种农药残留的气相色谱-电子轰击离子源质谱(GC-EI/MS)分析方法的研究,并对其中3种农药的EI/MS碎片离子的断裂机理与结构进行了初步解析。探讨了蜂蜜试样前处理条件的优化与选择。将蜂蜜试样用乙酸乙酯提取剂超声提取、Florisil硅藻土色谱柱净化和正己烷-乙酸乙酯(体积比为7∶3)混合洗脱剂洗脱后,以PCB103为内标物,采用选择离子监测(SIM)方式下的GC-EI/MS分析。当试样的加标浓度为50,100和200 μg/kg时,加标回收率为82%~120%,相对标准偏差小于11.0%。23种农药的检测限都小于10.0 μg/kg,线性范围为10~500 μg/kg,相关系数都大于0.995。此分析方法已成功地应用于蜂蜜中23种痕量农药残留的分析。  相似文献   

5.
A multiresidue method was developed for the determination of 15 pesticides (organochlorines, organophosphorus compounds, pyrethroids, and other acaricides) in various commercial honeys (eucalyptus, lavender, orange, rosemary, and multifloral). The analytical procedure is based on the matrix solid-phase dispersion of honey in a mixture of Florisil and anhydrous sodium sulfate; the mixture is placed in small plastic columns and extracted with hexane-ethyl acetate (90 + 10, v/v). The pesticide residues are determined by capillary gas chromatography with electron-capture detection. Recoveries with the method at concentrations between 0.15 and 1.5 microg/g ranged from 80 to 113%, and relative standard deviations were <10% for all the pesticides studied. The pesticide detection limits were within the range 0.5-5 microg/kg for organochlorines, around 3 microg/kg for the chlorinated organophosphorus pesticides studied, near 15 microg/kg for fluvalinate, and about 3 microg/kg for the other pyrethroids.  相似文献   

6.
Two multiresidue methods were developed for the determination of 15 pesticides (organochlorines, organphosphorus compounds, pyrethroids, and fungicides) in medicinal herbs Isatis indigotica Fort. and its formulations. The analytical procedure is based on ultrasonic assisted extraction and liquid-liquid extraction (LLE). After solvents were added, the raw material or granule sample was sonicated in an ultrasonic water bath and then centrifuged, filtered, and cleaned up by LLE. The infusion sample was extracted with petroleum ether by LLE. The pesticide residues were determined by capillary gas chromatography with electron-capture or flame photometric detection. Recoveries with the method at concentrations between 0.4 microg/kg and 10 mg/kg ranged from 70.2 to 119.5% for raw material, 73.2 to 105.1% for granule formulation, and 72.8 to 113.3% for infusion formulation. The relative standard deviation values were <20% for all of the pesticides studied. The pesticide detection limits were within the ranges 0.3-0.5 microg/L for endosulfan, 3-7.5 microg/L for pyrethroids, 0.7-32.5 microg/L for organophosphorus pesticides, and 0.1-0.6 microg/L for the other pesticides. The proposed methods are simple and rapid and provide simultaneous determination of pesticide residues in Isatis indigotica Fort. with acceptable recoveries and repeatability and an adequate limit of determination.  相似文献   

7.
Direct sample introduction (DSI), or "dirty sample injection," was investigated in the determination of 22 diverse pesticide residues in mixed apple, green bean, and carrot extracts by benchtop gas chromatography/tandem mass spectrometry (DSI/GC/MS-MS). The targeted pesticides, some of which were incurred in the samples, included chlorpyrifos, azinphos-methyl, parathion-methyl, diazinon, terbufos, p,p'-DDE, endosulfan sulfate, carbofuran, carbaryl, propargite, bifenthrin, dacthal, trifluralin, metalaxyl, pendimethalin, atrazine, piperonyl butoxide, diphenylamine, vinclozolin, chlorothalonil, quintozene, and tetrahydrophthalimide (the breakdown product of captan). The analytical DSI method entailed the following steps: (1) blend 30 g sample with 60 mL acetonitrile for 1 min in a centrifuge bottle; (2) add 6 g NaCl and blend 30 s; (3) centrifuge for 1-2 min; (4) add 5 mL upper layer to 1 g anhydrous MgSO4 in a vial; and (5) analyze 11 microL extract, using DSI/GC/MS-MS. Sample cleanup is not needed because GCIMS-MS is exceptionally selective for the targeted analytes, and nonvolatile coextracted matrix components do not contaminate the injector or the GC/MS-MS system. Average recoveries of the pesticides were 103 +/- 7% with relative standard deviations of 14 +/- 5% on average, and limits of detection were <2 ng/g for nearly all pesticides studied. The DSI/GC/ MS-MS approach for targeted pesticides is quantitative, confirmatory, sensitive, selective, rugged, rapid, simple, and inexpensive.  相似文献   

8.
徐锦忠  吴斌  丁涛  沈崇钰  赵增运  陈惠兰  蒋原 《色谱》2006,24(5):436-439
建立了蜂蜜中林可胺类抗生素林可霉素和氯林可霉素的高效液相色谱-电喷雾串联质谱(HPLC/ESI-MS/MS)检测方法。样品经固相萃取提取净化、反相液相色谱分离后进行质谱分析,在选择反应监测模式(SRM) 下进行特征母-子离子对信号采集。根据保留时间、母离子和两个特征子离子信息进行定性分析,以共同的基峰离子m/z 126进行定量。两种抗生素的检测限(S/N=3) 为 0.1 μg/kg,定量限为 0.5 μg/kg,在1.0~200 μg/L时峰强度与质量浓度的线性关系良好(r2>0.996)。在1.0,5.0,20.0 μg/kg 3个添加水平,两种抗生素的平均回收率范围为80%~110%,日内测定结果的相对标准偏差小于8%,日间测定结果的相对标准偏差小于15%。结果表明,该法简单、灵敏,特异性强,适用于蜂蜜中林可胺类抗生素残留的分析确证。  相似文献   

9.
An analytical procedure using supercritical fluid extraction (SFE) and capillary gas chromatography with electron-capture detection was developed to determine simultaneously residues of different pesticides (organochlorine, organophosphorus, organonitrogen and pyrethroid) in honey samples. Fortification experiments were conducted to test conventional extraction (liquid-liquid) and optimize the extraction procedure in SFE by varying the CO2-modifier, temperature, extraction time and pressure. Best efficiency was achieved at 400 bar using acetonitrile as modifier at 90 degrees C. For the clean-up step, Florisil cartridges were used for both methods LLE and SFE. Recoveries for majority of pesticides from fortified samples of honey at fortification level of 0.01-0.10 mg/kg ranged 75-94% from both methods. Limits of detection found were less than 0.01 mg/kg for ECD and confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in selected-ion monitoring mode. The multiresidue methods in real honey samples were applied and the results of developed methods were compared.  相似文献   

10.
A sample preparation method based on single solvent phase extraction and solid-phase extraction (SPE-NH2) clean-up is studied in combination with fast capillary gas chromatography (GC) to determine 18 selected pesticides belonging to various chemical classes in apples, the common raw material for baby food production and baby food, at the concentration level < or = 10 microg/kg maximum residual limit (MRL). Possibilities of mass spectrometry (MS) detector and electron capture detector (ECD) in fast gas chromatography (GC) of samples with complex matrice at ultra trace levels of pesticide residues were studied and compared. MS detection in single ion monitoring (SIM) mode provided higher selectivity compared to ECD. Optimisation of extraction as well as the simplifying of the whole process of sample preparation was carried out. Recoveries obtained at concentration level of 5 microg/kg (the required value for limit of quantification (LOQ) in baby food) were >90%, except of dimethoate (77.7%) and captan (46.4%) with MS detection. The obtained LOQs were at least 1 order lower than 5 microg/kg for the majority of compounds. The repeatability of gas chromatography-mass spectrometry (GC-MS) measurements of the matrix matched standards expressed as relative standard deviation was <11% except of captan and cypermethrin.  相似文献   

11.
An analytical method for the determination of residues of the antibiotic drugs lincomycin and tylosin in honey was developed. The procedure employed a solid-phase extraction for the isolation of lincomycin and tylosin from diluted honey samples. The antibiotic residues were subsequently analyzed by reversed-phase HPLC with atmospheric pressure chemical ionization mass spectrometric detection. Average analyte recoveries for lincomycin and tylosin ranged from 84 to 107% in replicate sets of honey samples fortified with drug concentrations of 0.01, 0.5, and 10 microg/g. The method detection limits were determined to be 0.007 and 0.01 microg/g for lincomycin and tylosin, respectively.  相似文献   

12.
One of the major problems in quantitative analysis of pesticide residues in food samples by gas chromatography–tandem mass spectrometry (GC–MS/MS) is the enhancement or the suppression, of the target analyte signals in matrix extracts. Potentially positive samples, which had previously been identified by a rapid screening method, were quantified using standard addition to compensate matrix effects. As example we performed a systematic study on the application of the standard addition calibration (SAC) method for the determination of 12 pesticides (acephate, bromopropylate, chlorpyrifos, cypermethrin, diazinon, etrimfos, heptenophos, iprodione, methamidophos, procymidone, tetradifon, and triadimefon) in two matrices (cucumber and orange) in the range of initial concentrations of 10–200 μg kg−1. The influence of some factors, such as the minimum number of standard additions used (single, two, three or four points calibration), as well as the known amount of analyte added to the sample, is evaluated in order to obtain reliable results. Accurate quantification is achieved when a single point SAC at 200 μg kg−1 was used, obtaining for all the cases recoveries between 70 and 120%. The proposed analytical approach only needs two injections per sample (blank and spiked extracted sample) to determine the final concentration of pesticide in positive samples.  相似文献   

13.
In this study, a new method for the determination of organophosphorus pesticides (OPPs) (ethoprophos, diazinon, parathion methyl, fenitrothion, malathion, isocarbophos and quinaphos) in orange juice was developed. Single-drop microextraction (SDME) parameters, such as organic solvent, drop volume, agitation rate, extraction time, and salt concentration were optimized through analysis of OPPs in fortified water. The orange juice was simply centrifuged and diluted with water, extracted by SDME and analyzed by gas chromatography (GC) equipped with a flame photometric detection (FPD). Fortification tests were conducted for concentrations between 10 and 500 microg/L; mean relative recoveries for each pesticide were all above 76.2% and below 108.0%. Limits of detection of the method for orange juice were below 5 microg/L for all target pesticides. The repeatability of the proposed method, expressed as relative standard deviation varied between 4.6 and 14.1% (n=5). The proposed method is acceptable in the analysis of OPPs pesticides in juice matrices.  相似文献   

14.
Royal jelly, one of the most important bee products, can be contaminated with pesticide and/or antibiotic residues resulting from treatments applied either inside beehives or in the agricultural environment. A new multiresidue method was developed and validated for analysis of nine pesticides in royal jelly. Solid-phase extraction RP-C(18) cartridges were used for sample purification and isolation of analytes. Final solution was analyzed with GC and micro-electron-capture detection. Four synthetic acaricides used by beekeepers (bromopropylate, coumaphos, malathion and tau-fluvalinate), and moreover one pyrethroid, two organochlorine, and two organophosphate insecticides were tested. Linearity is demonstrated for the range of 0.0025-1mgkg(-1), with correlation coefficients ranging from 0.99991 to 0.99846, depending on the analyte. Overall recovery rates from royal jelly blank samples spiked at five fortification levels ranged from 80.8% (lindane) to 91.3% (ethion), well above the range defined by the SANCO/10232/2006 and EC/675/2002 documents. The limit of quantification was <0.003-0.005 mg kg(-1) depending on the analyte, and the reporting level of the method, defined as the lowest recovery level, was 0.005 mg kg(-1).  相似文献   

15.
An analytical method was developed to determine 14 organophosphorus pesticide residues in Lycium barbarum, which is both a botanical medicine and a food. A 5 g sample is mixed with 10 mL ethyl acetate and, after shaking and centrifuging, 5 mL of the upper layer is removed, concentrated, and analyzed by gas chromatography (GC) with flame photometric detection. The essential feature of this method is that, for the purpose of reducing the burden of the GC system, 0.01 g activated carbon is used to absorb pigments during the cleanup procedure. Average recoveries of 14 organophosphorus pesticides added at 0.05, 0.1, and 0.5 mg/kg were 66.84-102.42, 71.07-97.93, and 62.50-96.24%, respectively. Limits of detection ranged from 5 to 15 microg/kg. The identities of the 14 pesticides were confirmed by GC/mass spectrometry detection in the selected-ion monitoring mode. This method is sensitive, simple, rapid, inexpensive, and safe.  相似文献   

16.
Two simple methods were developed to determine 11 pesticides in coconut water, a natural isotonic drink rich in salts, sugars and vitamins consumed by the people and athletes. The first procedure involves solid-phase extraction using Sep-Pak Vac C18 disposable cartridges with methanol for elution. Isocratic analysis was carried out by means of high-performance liquid chromatography with ultraviolet detection at 254 nm to analyse captan, chlorothalonil, carbendazim, lufenuron and diafenthiuron. The other procedure is based on liquid-liquid extraction with hexane-dichloromethane (1:1, v/v), followed by gas chromatographic analysis with effluent splitting to electron-capture detection for determination of endosulfan, captan, tetradifon and trichlorfon and thermionic specific detection for determination of malathion, parathion-methyl and monocrotophos. The methods were validated with fortified samples at different concentration levels (0.01-12.0 mg/kg). Average recoveries ranged from 75 to 104% with relative standard deviations between 1.4 and 11.5%. Each recovery analysis was repeated at least five times. Limits of detection ranged from 0.002 to 2.0 mg/kg. The analytical procedures were applied to 15 samples and no detectable amounts of the pesticides were found in any samples under the conditions described.  相似文献   

17.
A new analytical procedure using a hollow fiber supported liquid membrane (HFSLM) has been developed for the simultaneous determination of pesticide residues in vegetables by liquid chromatography (LC) coupled with electrospray mass spectrometry (MS). The extraction technique requires minimal sample preparation and solvent consumption. Optimum extraction conditions have been evaluated with respect to sample pH, ionic strength, liquid membrane composition, extraction time, stirring rate and acceptor composition. The extraction method has been validated for matrices such as cucumber, tomato and pepper, indicating that cucumber can be selected as representative matrix for routine analysis of these food commodities. Linear ranges of pesticides in vegetable samples were 10 to 200 microg/kg, and the repeatability of the method was less than 20% for the lowest calibration point. The limits of detection ranged from 0.06 to 2.7 microg/kg and the limits of quantification from 0.2 to 9.0 microg/kg, which were low enough to determine the pesticide residues at concentrations below or equal to the maximum residue levels (MRLs) specified by European Union. The method was finally applied to the determination of more than 20 pesticides in market vegetable samples and the concentrations found in these samples were always lower than the MRLs. This new approach can be considered as a powerful alternative to the traditional extraction techniques.  相似文献   

18.
A new method for the simultaneous determination of 1,4-dichlorobenzene (p-DCB), naphthalene and 1,2-dibromoethane (1,2-DBE) residues in honey has been developed. Analysis is carried out using gas chromatography-mass spectrometry (GC/MS) in selected ion monitoring mode (SIM), after extraction and preconcentration of target analytes by headspace solid-phase microextraction (HS-SPME), with a 100 microm film thickness polydimethylsiloxane (PDMS) fiber. Several parameters affecting the extension of the adsorption process (i.e., addition of salt, extraction time, extraction temperature) were studied. The optimal conditions for the determination of these analytes were established. The proposed HS-SPME method showed good sensitivity, without carryover between the samples. Linearity was studied from 5 to 2500 microg kg(-1) for p-DCB, 0.5 to 500 microg kg(-1) for naphthalene and 5 to 500 microg kg(-1) honey for 1,2-DBE with correlation coefficients (r(2)) ranging from 0.9901 to 0.9999. Precision was assessed and both intra and inter-day R.S.D.s (%) were below 6.3%. The detection limits were found to be 1, 0.1 and 2 microg kg(-1) honey for p-DCB, naphthalene and 1,2-DBE, respectively. The percentage recoveries that were evaluated with the proposed HS-SPME method and the standard addition calibration technique gave values among 72.8 and 104.3% for measurements in samples spiked with one target analyte or mixtures of the three. This method has been applied for the analysis of unknown honey samples. The results showed an excellent applicability of the proposed method for the determination of the target compounds in honey samples.  相似文献   

19.
An analytical method was developed for precise identification and quantitation of 10 pesticides in human blood. The pesticides studied, which have appeared frequently in actual cases, were endosulfan, lindane, parathion, ethyl-azinphos, diazinon, malathion, alachlor, tetradifon, fenthion and dicofol (o-p' and p-p' isomers). The current method replaces an earlier method which involved liquid-liquid extraction with a mixture of n-hexane-benzene (1 + 1). The extraction is performed by solid-phase extraction, with C18 cartridges and 2 internal standards, perthane and triphenylphosphate. Eluates were analyzed by gas chromatography (GC) with nitrogen-phosphorus and electrochemical detectors. Results were confirmed by GC-mass spectrometry in the electron impact mode. Blood blank samples spiked with 2 standard mixtures and an internal standard were used for quantitation. Mean recoveries ranged from 71.83 to 97.10%. Detection and quantitation limits are reported for each pesticide. Examples are provided to show the application of the present method to actual samples.  相似文献   

20.
A multiresidue method was developed for the determination of 12 organophosphorus insecticides (diazinon, parathion methyl, fenitrothion, pirimiphosmethyl, malathion, fenthion, chlorpyrifos, quinalphos, methidathion, ethion, azinphosmethyl, coumaphos), one carbamate (pirimicarb), and one amidine (amitraz) in unifloral and multifloral honeys. The analytical procedure was based on the matrix solid-phase dispersion of honey on a mixture of Florisil and anhydrous sodium sulfate in small glass columns and subsequent extraction with a low volume of hexane-ethyl acetate (90 + 10, v/v), assisted by sonication. The insecticide residues were determined by capillary chromatography with nitrogen-phosphorus detection and confirmed by mass spectrometry. Average recoveries at the 0.05-0.5 microg/g levels were >80% for organophosphorus insecticides and about 60% for the other insecticides, pirimicarb and amitraz, with relative standard deviations <10%. The detection limit for the different insecticides ranged between 6 and 15 microg/kg. The main advantages of the proposed method are that extraction and cleanup are performed in a single step with a low volume of organic solvent. The method is simple, rapid, and less laborious than conventional methods. Several Spanish honeys were analyzed with the proposed method and no residues of the studied insecticides were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号