首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laser-ablated lanthanide metal atoms were condensed with CH(2)F(2) in excess argon at 6 K or neon at 4 K. New infrared absorption bands are assigned to the oxidative addition product methylene lanthanide difluorides on the basis of deuterium substitution and vibrational frequency calculations with density functional theory (DFT). Two dominant absorptions in the 500 cm(-1) region are identified as lanthanide-fluoride stretching modes for this very strong infrared absorption. The predominantly lanthanide-carbon stretching modes follow a similar trend of increasing with metal size and have characteristic 30 cm(-1) deuterium and 14 cm(-1) (13)C isotopic shifts. The electronic structure calculations show that these CH(2)LnF(2) complexes are not analogous to the simple transition and actinide metal methylidenes with metal-carbon double bonds that have been investigated previously, because the lanthanide metals (in the +2 or +3 oxidation state) do not appear to form a π-type bond with the CH(2) group. The DFT and ab initio correlated molecular orbital theory calculations predict that these complexes exist as multiradicals, with a Ln-C σ bond and a single electron on C-2p weakly coupled with f(x) (x = 1 (Ce), 2 (Pr), 3(Nd), etc.) electrons in the adjacent Ln-4f orbitals. The Ln-C σ bond is composed of about 15% Ln-5d,6s and 85% C-sp(2) hybrid orbital. The Ln orbital has predominantly 6s and 5d character with more d-character for early lanthanides and increasing amounts of s-character across the row. The Ln-F bonds are almost purely ionic. Accordingly, the argon-neon matrix shifts are large (13-16 cm(-1)) for the ionic Ln-F bond stretching modes and small (~1 cm(-1)) for the more covalent Ln-C bond stretching modes.  相似文献   

2.
Complete active space self-consistent field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with an atomic natural orbital basis were performed for the 1(2)A', 1(2)A', 2(2)A', 2(2)A', and 3(2)A' (X2E, A2A1, and B2E) states of the CH3F+ ion. The 1(2)A' state is predicted to be the ground state, and the C(s)-state energy levels are different from those of the CH3Cl+ ion. The 2(2)A' (A2A1) state is predicted to be repulsive, and the calculated adiabatic excitation energies for 2(2)A' and 3(2)A' are very close to the experimental value for the B state. The CASPT2//CASSCF potential energy curves (PECs) were calculated for F-loss dissociation from the five C(s) states and H-loss dissociation from the 1(2)A', 1(2)A', and 2(2)A' states. The electronic states of the CH3+ and CH2F+ ions as the dissociation products were carefully determined by checking the energies and geometries of the asymptote products, and appearance potentials for the two ions in different states are predicted. The F-loss PEC calculations for CH3F+ indicate that F-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [all correlating with CH3+(X1A1')], which supports the experimental observations of direct dissociation from the X and A states, and that direct F-loss dissociation can occur from the two Jahn-Teller component states of B2E, 2(2)A' and 3(2)A' [correlating with CH3+(1(3)A') and CH3+(1(3)A'), respectively]. Some aspects of the 3(2)A' Cl-loss PEC of the CH3Cl+ ion are inferred on the basis of the calculation results for CH3F+. The H-loss PEC calculations for CH3F+ indicate that H-loss dissociation occurs from the 1(2)A', 1(2)A', and 2(2)A' states [correlating with CH2F+(1(3)A'), CH2F+(X1A1), and CH2F+(1(1)A'), respectively], which supports the observations of direct dissociation from the X and B states. As the 2(2)A' H-loss PEC of CH3Cl+, the 2(2)A' H-loss PEC of CH3F+ does not lead to H + CH2X+, but the PECs of the two ions represent different types of reactions.  相似文献   

3.
Early flowtube studies showed that (CH(3))(2)S (DMS) reacted very rapidly with F(2); hydrogen sulfide (H(2)S), however, did not. Recent crossed molecular beam studies found no barrier to the reaction between DMS and F(2) to form CH(2)S(F)CH(3) + HF. At higher collision energies, a second product channel yielding (CH(3))(2)S-F + F was identified. Both reaction channels proceed through an intermediate with an unusual (CH(3))(2)S-F-F bond structure. Curiously, these experimental studies have found no evidence of direct F(2) addition to DMS, resulting in (CH(3))(2)SF(2), despite the fact that the isomer in which both fluorines occupy axial positions is the lowest energy product. We have characterized both reactions, H(2)S + F(2) and DMS + F(2), with high-level ab initio and generalized valence bond calculations. We found that recoupled pair bonding accounts for the structure and stability of the intermediates present in both reactions. Further, all sulfur products possess recoupled pair bonds with CH(2)S(F)CH(3) having an unusual recoupled pair bond dyad involving π bonding. In addition to explaining why DMS reacts readily with F(2) while H(2)S does not, we have studied the pathways for direct F(2) addition to both sulfide species and found that (for (CH(3))(2)S + F(2)) the CH(2)S(F)CH(3) + HF channel dominates the potential energy surface, effectively blocking access to F(2) addition. In the H(2)S + F(2) system, the energy of the transition state for formation of H(2)SF(2) lies very close to the H(2)SF + F asymptote, making the potential pathway a roaming atom mechanism.  相似文献   

4.
To expand the limited range of rare-earth metal cationic alkyl complexes known, a series of mono- and dicationic trimethylsilylmethyl complexes supported by THF and 12-crown-4 ligands with [BPh4]-, [BPh3(CH2SiMe3)]-, [B(C6F5)4]-, [B(C6F5)3(CH2SiMe3)]-, and [Al(CH2SiMe3)4]- anions were prepared from corresponding neutral precursors [Ln(CH2SiMe3)3Ln] (Ln = Sc, Y, Lu; L = THF, n = 2 or 3; L = 12-crown-4, n = 1) as solvent-separated ion pairs. The syntheses of the monocationic derivatives [Ln(CH2SiMe3)2(12-crown-4)n(THF)m]+[A]- are all high yielding and proceed rapidly in THF solution at room temperature. A "one pot" procedure using the neutral species directly for the syntheses of a number of lutetium and yttrium dicationic derivatives [Ln(CH2SiMe3)(12-crown-4)n(THF)m]2+[A]-2 with a variety of different anions, a class of compounds previously limited to just a few examples, is presented. When BPh3 is used to generate the ion triple, the presence of 12-crown-4 is required for complete conversion. Addition of a second equiv of 12-crown-4 and a third equiv of [NMe2PhH]+[B(C6F5)4]- abstracts a third alkyl group from [Ln(CH2SiMe3)(12-crown-4)2(THF)x]2+[B(C6F5)4]-2 (Ln = Y, Lu). X-ray crystallography and variable-temperature (VT) NMR spectroscopy reveal a structural diversity within the known series of neutral 12-crown-4 supported tris(trimethylsilylmethyl) complexes [Ln(CH2SiMe3)3(12-crown-4)] (Ln = Sc, Y, Sm, Gd-Lu) in the solid and solution states. The X-ray structure of [Sc(CH2SiMe3)3(12-crown-4)] exhibits incomplete 12-crown-4 coordination. VT NMR spectroscopy indicates fluxional 12-crown-4 coordination on the NMR time scale. X-ray crystallography of only the second structurally characterized dicationic rare-earth metal alkyl complex [Y(CH2SiMe3)(12-crown-4)(THF)3]2+[BPh4]-2 shows exocyclic 12-crown-4 coordination at the 8-coordinate metal center with well separated counteranions. 11B and 19F NMR spectroscopy of all mono- and dicationic rare-earth metal complexes reported demonstrate that the anions are symmetrical and noncoordinating on the NMR time scale. A series of trends within the 1H and 13C{1H} NMR resonances arising from the Ln-CH2 groups and, in the case of yttrium, the 1JYC coupling constants at the Y-CH2 group and the 89Y chemical shift values are discussed.  相似文献   

5.
We use a combination of crossed laser-molecular beam experiments and velocity map imaging experiments to investigate the primary photofission channels of chloroacetone at 193 nm; we also probe the dissociation dynamics of the nascent CH(3)C(O)CH(2) radicals formed from C-Cl bond fission. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence another photodissociation channel of the precursor, C-C bond fission to produce CH(3)CO and CH(2)Cl. The CH(3)C(O)CH(2) radical formed from C-Cl bond fission is one of the intermediates in the OH + allene reaction en route to CH(3) + ketene. The 193 nm photodissociation laser allows us to produce these CH(3)C(O)CH(2) radicals with enough internal energy to span the dissociation barrier leading to the CH(3) + ketene asymptote. Therefore, some of the vibrationally excited CH(3)C(O)CH(2) radicals undergo subsequent dissociation to CH(3) + ketene products; we are able to measure the velocities of these products using both the imaging and scattering apparatuses. The results rule out the presence of a significant contribution from a C-C bond photofission channel that produces CH(3) and COCH(2)Cl fragments. The CH(3)C(O)CH(2) radicals are formed with a considerable amount of energy partitioned into rotation; we use an impulsive model to explicitly characterize the internal energy distribution. The data are better fit by using the C-Cl bond fission transition state on the S(1) surface of chloroacetone as the geometry at which the impulsive force acts, not the Franck-Condon geometry. Our data suggest that, even under atmospheric conditions, the reaction of OH with allene could produce a small branching to CH(3) + ketene products, rather than solely producing inelastically stabilized adducts. This additional channel offers a different pathway for the OH-initiated oxidation of such unsaturated volatile organic compounds, those containing a C=C=C moiety, than is currently included in atmospheric models.  相似文献   

6.
Complete basis set (CBS) ab initio computational studies were performed with the target being to explore the CH+CH potential energy surface. Several closed and open shell intermediates were located on the potential energy surface. Computed enthalpies for the branching reactions, as well as heats of formation are in excellent agreement. Although CBS computed energies are of high quality, this computational study is not capable of predicting the branching product ratio due to fact that neither the MP2 nor the 6-311G(2d,2p) basis set are sufficient to locate the reactant complexes and the transition state structures for the hydrogen and carbon transfer reactions in the reaction complexes. To properly explore the CH+CH potential energy surface a much higher ab initio theory level is required.  相似文献   

7.
Using photofragment translational spectroscopy and tunable vacuum-ultraviolet ionization, we measured the time-of-flight spectra of fragments upon photodissociation of vinyl fluoride (CH2CHF) at 157 and 193 nm. Four primary dissociation pathways--elimination of atomic F, atomic H, molecular HF, and molecular H2--are identified at 157 nm. Dissociation to C2H3 + F is first observed in the present work. Decomposition of internally hot C2H3 and C2H2F occurs spontaneously. The barrier heights of CH2CH --> CHCH + H and cis-CHCHF --> CHCH + F are evaluated to be 40+/-2 and 44+/-2 kcal mol(-1), respectively. The photoionization yield spectra indicate that the C2H3 and C2H2F radicals have ionization energies of 8.4+/-0.1 and 8.8+/-0.1 eV, respectively. Universal detection of photoproducts allowed us to determine the total branching ratios, distributions of kinetic energy, average kinetic energies, and fractions of translational energy release for all dissociation pathways of vinyl fluoride. In contrast, on optical excitation at 193 nm the C2H2 + HF channel dominates whereas the C2H3 + F channel is inactive. This reaction C2H3F --> C2H2 + HF occurs on the ground surface of potential energy after excitation at both wavelengths of 193 and 157 nm, indicating that internal conversion from the photoexcited state to the electronic ground state of vinyl fluoride is efficient. We computed the electronic energies of products and the ionization energies of fluorovinyl radicals.  相似文献   

8.
Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg(C[triple chemical bond]CPh)2, respectively. The monomeric, six-coordinate, cisoid [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] complexes have trigonal prismatic geometries and rare (for Ln) terminal C[triple chemical bond]CPh groups with contrasting Ln--C[triple chemical bond]C angles (Ln=Nd, 170.9(4) degrees; Ln=Sm, 142.9(7) degrees). Their formation lends support to the view that [Ln(DippForm)2F(thf)] complexes arise from oxidative formation and C--F activation of [Ln(DippForm)2(C6F5)] intermediates.  相似文献   

9.
The photodissociation spectroscopy and dynamics resulting from excitation of the B (2)A(")<--X (2)A(") transition of CH(2)CFO have been examined using fast beam photofragment translational spectroscopy. The photofragment yield spectrum reveals vibrationally resolved structure between 29 870 and 38 800 cm(-1), extending approximately 6000 cm(-1) higher in energy than previously reported in a laser-induced fluorescence excitation spectrum. At all photon energies investigated, only the CH(2)F+CO and HCCO+HF fragment channels are observed. Both product channels yield photofragment translational energy distributions that are characteristic of a decay mechanism with a barrier to dissociation. Using the barrier impulsive model, it is shown that fragmentation to CH(2)F+CO products occurs on the ground state potential energy surface with the isomerization barrier between CH(2)CFO and CH(2)FCO governing the observed translational energy distributions.  相似文献   

10.
The theoretical investigations were performed on the reaction mechanisms for the title reactions CH(3)C(O)CH(3) + Cl --> products (R1), CH(3)C(O)CH(2)Cl + Cl --> products (R2), CH(3)C(O)CHCl(2) + Cl --> products (R3), and CH(3)C(O)CCl(3) + Cl --> products (R4) by ab initio direct dynamics approach. Two different reaction channels have been found: abstract of the H atom from methyl (--CH(3)) group or chloromethyl (--CH(3-n)Cl(n)) group of chloroacetone and addition of a Cl atom to the carbon atom of the carbonyl group of chloroacetone followed by methyl or chloromethyl eliminations. Because of the higher potential energy barrier, the contribution of addition-elimination reaction pathway to the total rate constants is very small and thus this pathway is insignificant in atmospheric conditions. The rate constants for the H-abstraction reaction channels are evaluated by using canonical variational transition state theory incorporating with the small-curvature tunneling correction. Theoretical overall rate constants are in good agreement with the available experimental values and decrease in the order of k(1) > k(2) > k(3) > k(4). The results indicate that for halogenated acetones the substitution of halogen atom (F or Cl) leads to the decrease in the C--H bond reactivity and more decrease of reactivity is caused by F-substitution.  相似文献   

11.
The reaction of formaldehyde radical anion with methyl chloride, CH2O*- + CH3Cl, is an example in which a single transition state leads to two products: substitution at carbon (Sub(C), CH3CH2O* + Cl-) and electron transfer (ET, CH2O + CH3* + Cl-). The branching ratio for this reaction has been studied by ab initio molecular dynamics (AIMD). The energies of transition states and intermediates were computed at a variety of levels of theory and compared to accurate energetics calculated by the G3 and CBS-QB3 methods. A bond additivity correction has been constructed to improve the Hartree-Fock potential energy surface (BAC-UHF). A satisfactory balance between good energetics and affordable AIMD calculations can be achieved with BH&HLYP/6-31G(d) and BAC-UHF/6-31G(d) calculations. Approximately 200 ab initio classical trajectories were calculated for each level of theory with initial conditions sampled from a thermal distribution at 298 K at the transition state. Three types of trajectories were distinguished: trajectories that go directly to ET product, trajectories that go to Sub(C) product, and trajectories that initially go into the Sub(C) valley and then dissociate to ET products. The BH&HLYP/6-31G(d) calculations overestimate the number of nonreactive and direct ET trajectories because the transition state is too early. For the BH&HLYP and BAC-UHF methods, about one-third of the trajectories that initially go into the Sub(C) valley dissociate to ET products, compared to just over half with UHF/6-31G(d) in the earlier study. This difference can be attributed to a better value for the calculated energy release from the initial transition state and to an improved Sub(C) --> ET barrier height with the BH&HLYP and BAC-UHF methods.  相似文献   

12.
Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the (3)CH(2) + OH, (3)CH(2) + (3)CH(2), and (3)CH(2) + CH(3) barrierless association reactions. The predicted rate coefficient for the (3)CH(2) + OH reaction (approximately 1.2 x 10(-10) cm(3) molecule(-1) s(-1) for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the (3)CH(2) + CH(3) and (3)CH(2) + (3)CH(2) reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C(2)H(2) + 2H and C(2)H(2) + H2 products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH(3) and OH and for the CH(3) + OH reaction, are used to test the geometric mean rule for the CH(3), (3)CH(2), and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the (3)CH(2) + OH and (3)CH(2) + CH(3) reactions to better than 20%, with a larger (up to 50%) error for the CH(3) + OH reaction.  相似文献   

13.
Cho HG  Andrews L 《Inorganic chemistry》2004,43(17):5253-5257
Laser-ablated Ti atoms react with CH(3)F upon condensation with excess argon to form primarily CH(3)TiF and (CH(3))(2)TiF(2). Irradiation in the UV region promotes alpha-hydrogen rearrangement of CH(3)TiF to CH(2)=TiHF and increases the yield of (CH(3))(2)TiF(2). Annealing to allow diffusion and reaction of more CH(3)F markedly increases the yield of (CH(3))(2)TiF(2). This shows that the CH(3)TiF + CH(3)F reaction is spontaneous and that triplet state CH(3)TiF is an extremely reactive molecule. B3LYP calculations are extremely effective in predicting vibrational frequencies and isotopic shifts for CH(3)TiF and (CH(3))(2)TiF(2) and thus in confirming their identification from matrix infrared spectroscopy.  相似文献   

14.
Rare-earth metal alkyl tri(tert-butoxy)silanolate complexes [Ln{mu,eta2-OSi(O(t)Bu)3}(CH2SiMe3)2]2 (Ln = Y (1), Tb (2), Lu (3)) were prepared via protonolysis of the appropriate tris(alkyl) complex [Ln(CH2SiMe3)3(thf)2] with tri(tert-butoxy)silanol in pentane. Crystal structure analysis revealed a dinuclear structure for with square pyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta2-bridging coordination mode giving a 4-rung truncated ladder and non-crystallographic inversion centre. Addition of two equiv. of 12-crown-4 to a pentane solution of 1 or 3 respectively gave [Ln{OSi(O(t)Bu)(3)}(CH2SiMe3)2(12-crown-4)].12-crown-4 (Ln = Y (4), Lu (5)). Crystal structure analysis of 5 showed a slightly distorted octahedral geometry at the lutetium centre. The silanolate ligand adopts an eta(1)-terminal coordination mode, whilst the crown ether unit coordinates in an unusual kappa3-fashion. Reaction of 1-3 with [NEt3H]+[BPh4]- in thf yielded the cationic derivatives [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[BPh4]- (Ln = Y (6), Tb (7) and Lu (8)); coordination of crown ether led to compounds of the form [Ln{OSi(O(t)Bu)3}(CH2SiMe3)(L)(thf)n]+[BPh4]- (Ln = Y, Lu, L = 12-crown-4, n = 1 (9,10); Ln = Y, Lu, L = 15-crown-5, n = 0 (11,12)). Reaction of 1 with [NMe2PhH]+[B(C6F5)4]-, [Al(CH2SiMe3)3] or BPh3 in thf gave the ion pairs [Y{OSi(O(t)Bu)3}(CH2SiMe3)(thf)4]+[A]- ([A]- = [B(C6F5)4]- (13), [Al(CH2SiMe3)4]- (14), [BPh3(CH2SiMe3)]- (15)), whilst two equiv. [NMe2PhH]+[BPh4]- with 1 in thf produced the dicationic ion triple [Y{OSi(O(t)Bu)3}(thf)6]2+[BPh4]-2 (16). Crystal structure analysis revealed that 16 is mononuclear with pentagonal bipyramidal geometry at the yttrium centre. The silanolate ligand coordinates in an eta(1)-terminal fashion. All diamagnetic compounds have been characterized by NMR spectroscopy. 1, 3, 4, 6 and 13 were tested as olefin hydrosilylation pre-catalysts with a variety of substrates; 1 was found to be highly active in 1-decene hydrosilylation.  相似文献   

15.
Reaction of [Ln(CH(2)SiMe(3))(3)(thf)(2)] (Ln=Y, Yb, and Lu) with one equivalent of Me(2)Si(C(5)Me(4)H)NHR' (R'=Ph, 2,4,6-Me(3)C(6)H(2), tBu) affords straightforwardly the corresponding half-sandwich rare-earth metal alkyl complexes [{Me(2)Si(C(5)Me(4))(NR')}Ln(CH(2)SiMe(3))(thf)(n)] (1: Ln = Y, R' = Ph, n=2; 2: Ln = Y, R' = C(6)H(2)Me(3)-2,4,6, n=1; 3: Ln = Y, R' = tBu, n=1; 4: Ln = Yb, R' = Ph, n=2; 5: Ln = Lu, R' = Ph, n=2) in high yields. These complexes, especially the yttrium complexes 1-3, serve as excellent catalyst precursors for the catalytic addition of various primary and secondary amines to carbodiimides, efficiently yielding a series of guanidine derivatives with a wide range of substituents on the nitrogen atoms. Functional groups such as C[triple chemical bond]N, C[triple chemical bond]CH, and aromatic C--X (X: F, Cl, Br, I) bonds can survive the catalytic reaction conditions. A primary amino group can be distinguished from a secondary one by the catalyst system, and therefore, the reaction of 1,2,3,4-tetrahydro-5-aminoisoquinoline with iPrN==C==NiPr can be achieved stepwise first at the primary amino group to selectively give the monoguanidine 38, and then at the cyclic secondary amino unit to give the biguanidine 39. Some key reaction intermediates or true catalyst species, such as the amido complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y(NEt(2))(thf)(2)] (40) and [{Me(2)Si(C(5)Me(4))(NPh)}Y(NHC(6)H(4)Br-4)(thf)(2)] (42), and the guanidinate complexes [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrNC(NEt(2))(NiPr)}(thf)] (41) and [{Me(2)Si(C(5)Me(4))(NPh)}Y{iPrN}C(NC(6)H(4)Br-4)(NHiPr)}(thf)] (44) have been isolated and structurally characterized. Reactivity studies on these complexes suggest that the present catalytic formation of a guanidine compound proceeds mechanistically through nucleophilic addition of an amido species, formed by acid-base reaction between a rare-earth metal alkyl bond and an amine N--H bond, to a carbodiimide, followed by amine protonolysis of the resultant guanidinate species.  相似文献   

16.
Several reaction pathways on the potential energy surface (PES) for the reaction of CH3O2 radicals with Br atoms are examined using both ab initio and density functional methods. Analysis of the PES suggests the presence of the stable intermediates CH3OOBr and CH3OBrO. CH3OOBr is calculated to be more stable than CH3OBrO by 9.7 kcal mol(-1) with a significant barrier preventing formation of CH3OBrO via isomerization of CH3OOBr. The relative importance of bi- and termolecular product channels resulting from the initially formed CH3OOBr adduct are assessed based on calculated barriers to the formation of CH2OO + HBr, CH3O + BrO, CH3Br + O2, and CH2O + HOBr.  相似文献   

17.
The reaction for CH3CH2+O(3P) was studied by ab initio method. The geometries of the reactants, intermediates, transition states and products were optimized at MP2/6-311+G(d,p) level. The corresponding vibration frequencies were calculated at the same level. The single-point calculations for all the stationary points were carried out at the QCISD(T)/6-311+G(d,p) level using the MP2/6-311+G(d,p) optimized geometries. The results of the theoretical study indicate that the major products are the CH2O+CH3, CH3CHO+H and CH2CH2+OH in the reaction. For the products CH2O+CH3 and CH3CHO+H, the major production channels are A1: (R)→IM1→TS3→(A) and B1: (R)→IM1→TS4→(B), respectively. The majority of the products CH2CH2+OH are formed via the direct abstraction channels C1 and C2: (R)→TS1(TS2)→(C). In addition, the results suggest that the barrier heights to form the CO reaction channels are very high, so the CO is not a major product in the reaction.  相似文献   

18.
The mechanisms of the reactions: CH(3)C(O)CH(2)F+OH/Cl-->products (R1/R2) and CH(3)C(O)CF(3)+OH/Cl-->products (R3/R4) are studied over a wide temperature range (200-2000 K) by means of the dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MP2/cc-pVDZ and B3LYP/6-311G(d,p) levels. The energy profiles of the reactions are then refined with the interpolated single-point-energy method (ISPE) at the BMC-CCSD level. The canonical variational transition-state theory (CVT) with the small-curvature-tunneling (SCT) correction method is used to calculate the rate constants. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CH(3)C(O)CH(2)F, CH(3)C(O)CF(3), CH(3)C(O)CHF, CH(2)C(O)CH(2)F, and CH(2)C(O)CF(3) are evaluated at the CCSD(T)/6-311+G(2d,p)//MP2/cc-pVDZ level of theory. The results indicate that the hydrogen abstraction is dominated by removal from the fluoromethyl position rather than from the methyl position.  相似文献   

19.
FTIR smog chamber techniques were used to measure k(Cl + C(2)F(5)CH(2)OCH(3)) = (2.52 ± 0.37) × 10(-11) and k(OH + C(2)F(5)CH(2)OCH(3)) = (5.78 ± 1.02) × 10(-13) cm(3) molecule(-1) s(-1) in 700 Torr of air diluent at 296 ± 1 K. The atmospheric lifetime of C(2)F(5)CH(2)OCH(3) is estimated to be 20 days. Reaction of chlorine atoms with C(2)F(5)CH(2)OCH(3) proceeds 18 ± 2% at the -CH(2)- group and 82 ± 2% at the -CH(3) group. Reaction of OH radicals with C(2)F(5)CH(2)OCH(3) proceeds 44 ± 5% at the -CH(2)- group and 56 ± 5% at the -CH(3) group. The atmospheric fate of C(2)F(5)CH(2)OCH(2)O radicals is reaction with O(2) to give C(2)F(5)CH(2)OCHO. The atmospheric fate of C(2)F(5)CH(O)OCH(3) radicals is C-C bond-cleavage to give C(2)F(5) radicals and CH(3)OCHO (methyl formate). The infrared spectrum was recorded and used to estimate a global warming potential of 6 (100 year time horizon) for C(2)F(5)CH(2)OCH(3).  相似文献   

20.
Despite the importance of the Fluoromethyl radicals in combustion chemistry, very little experimental information on their reactions toward stable molecules is available in the literature. Motivated by recent laboratory characterization about the reaction kinetics of Chloromethyl radicals with NO2, we carried out a detailed potential energy survey on the CH2F + NO2 reaction at the B3LYP/6-311G(d,p) and MC-QCISD (single-point) levels as an attempt toward understanding the CH2F + NO2 reaction mechanism. It is shown that the CH2F radical can react with NO2 to barrierlessly generate adduct a (H2FCNO2), followed by isomerization to b1 (H2FCONO-trans) which can easily interconvert to b2 (H2FCONO-cis). Subsequently, Starting from b (b1, b2), the most feasible pathway is the C--F and N--O1 bonds cleavage along with N--F bond formation of b (b1, b2) leading to P1 (CH2O + FNO), or the direct N--O1 weak-bond fission of b (b1, b2) to give P2 (CH2FO + NO), or the 1,3-H-shift associated with N--O1 bond rupture of b1 to form P3 (CHFO + HNO), all of which may have comparable contribution to the reaction CH2F + NO2. Much less competitively, b2 either take the 1,4-H-shift and O1--N bond cleavage to form product P4 (CHFO + HON) or undergo a concerted H-shift to isomer c2 (HFCONOH), followed by dissociation to P4. Because the rate-determining transition state (TSab1) in the most competitive channels is only 0.3 kcal/mol higher than the reactants in energy, the CH2F + NO2 reaction is expected to be rapid, and may thus be expected to significantly contribute to elimination of nitrogen dioxide pollutants. The similarities and discrepancies among the CH2X + NO2 (X = H, F, and Cl) reactions are discussed in terms of the electronegativity of halogen atom. The present article may assist in future experimental identification of the product distributions for the title reaction, and may be helpful for understanding the halogenated methyl chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号