首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-infrared (NIR) spectra in the region of 5000-4000 cm−1 with a chemometric method called searching combination moving window partial least squares (SCMWPLS) were employed to determine the concentrations of human serum albumin (HSA), γ-globulin, and glucose contained in the control serum IIB (CS IIB) solutions with various concentrations. SCMWPLS is proposed to search for the optimized combinations of informative regions, which are spectral intervals, considered containing useful information for building partial least squares (PLS) models. The informative regions can easily be found by moving window partial least squares regression (MWPLSR) method. PLS calibration models using the regions obtained by SCMWPLS were developed for HSA, γ-globulin, and glucose. These models showed good prediction with the smallest root mean square error of predictions (RMSEP), the relatively small number of PLS factors, and the highest correlation coefficients among the results achieved by using whole region and MWPLSR methods. The RMSEP values of HSA, γ-globulin, and glucose yielded by SCMWPLS were 0.0303, 0.0327, and 0.0195 g/dl, respectively. These results prove that SCMWPLS can be successfully applied to determine simultaneously the concentrations of HSA, γ-globulin, and glucose in complicated biological fluids such as CS IIB solutions by using NIR spectroscopy.  相似文献   

2.
New approach for chemometrics algorithm named region orthogonal signal correction (ROSC) has been introduced to improve the predictive ability of PLS models for biomedical components in blood serum developed from their NIR spectra in the 1280-1849 nm region. Firstly, a moving window partial least squares regression (MWPLSR) method was employed to locate the region due to water as a region of interference signals and to find the informative regions of glucose, albumin, cholesterol and triglyceride from NIR spectra of bovine serum samples. Next, a novel chemometrics method named searching combination moving window partial least squares (SCMWPLS) was used to optimize those informative regions. Then, the specific regions that contained the information of water, glucose, albumin, cholesterol and triglyceride were obtained. When an interested component in the bovine serum solution, such as glucose, albumin, cholesterol or triglyceride is being an analyte, the other three interests and water are considered as the interference factors. Thus, new approach for ROSC has employed for each specific region of interference signal to calculate the orthogonal components to the concentrations of analyte that were removed specifically from the NIR spectra of bovine serum in the region of 1280-1849 nm and the highest interference signal for model of analyte will be revealed. The comparison of PLS results for glucose, albumin, cholesterol and triglyceride built by using the whole region of original spectra and those developed by using the optimized regions suggested by SCMWPLS of original spectra, spectra treated OSC for orthogonal components of 1-3 and spectra treated ROSC using selected removing the highest interference signals from the spectra for orthogonal components of 1-3 are reported. It has been found that new approach of ROSC to remove the highest interference signal located by SCMWPLS improves of the performance of PLS modeling, yielding the lower RMSECV and smaller number of PLS factors.  相似文献   

3.
Changeable size moving window partial least squares (CSMWPLS) and searching combination moving window partial least squares (SCMWPLS) are proposed to search for an optimized spectral interval and an optimized combination of spectral regions from informative regions obtained by a previously proposed spectral interval selection method, moving window partial least squares (MWPLSR) [Anal. Chem. 74 (2002) 3555]. The utilization of informative regions aims to construct better PLS models than those based on the whole spectral points. The purpose of CSMWPLS and SCMWPLS is to optimize the informative regions and their combination to further improve the prediction ability of the PLS models. The results of their application to an open-path (OP)/FT-IR spectra data set show that the proposed methods, especially SCMWPLS can find out an optimized combination, with which one can improve, often significantly, the performance of the corresponding PLS model, in terms of low prediction error, root mean square error of prediction (RMSEP) with the reasonable latent variable (LVs) number, comparing with the results obtained using whole spectra or direct combination of informative regions for a compound. Regions consisting of the combinations obtained can easily be explained by the existence of IR absorption bands in those spectral regions.  相似文献   

4.
5.
A novel chemometric method, region orthogonal signal correction (ROSC), is proposed and applied to pretreat near-infrared (NIR) spectra of blood glucose measured in vivo. Water is the most serious interference component in such kinds of noninvasive measurements, because it shows very high absorbance in the spectra. In the present study, the spectra of blood glucose in the range of 1212 - 1889 nm are used, in which the absorption of water around 1440 nm is very high. ROSC aims at removing the interference signal due to water from the spectra by selecting a set of spectra with a special region of 1404 - 1454 nm that mainly contain information about the variation of the interference component, water, and calculating the orthogonal components to the concentrations of glucose that will be removed. The difference between ROSC and orthogonal signal correction (OSC) is that ROSC uses a special region of spectra for the estimation of scores and loading weights of orthogonal components to pretreat the spectra in other regions, while OSC only uses one fixed region of spectra to calculate loadings, scores and weights of OSC components and removes the OSC components in the same region. A clear advantage of ROSC is that it is more interpretable than OSC, because one can select a spectral region to remove the variation of a special component such as water. Another chemometric method, moving window partial least squares (MWPLSR), is also used to select informative regions of glucose from the NIR spectra of blood glucose measured in vivo, leading to improved PLS models. Results of the application of ROSC demonstrate that ROSC-pretreated spectra including the whole spectral region of 1212 - 1889 nm or an informative region of 1600- 1730 nm selected by MWPLSR provide very good performance of the PLS models. Especially, the later region yields a model with RMSECV of 15.8911 mg/dL for four PLS components. ROSC is a potential chemometric technique in the pretreatment of various spectra.  相似文献   

6.
Kasemsumran S  Du YP  Murayama K  Huehne M  Ozaki Y 《The Analyst》2003,128(12):1471-1477
Near-infrared (NIR) spectra in the 12,000-4,000 cm(-1) region were measured for phosphate buffer solutions containing human serum albumin (HSA), gamma-globulin, and glucose with various concentrations at 37 degrees C. Five levels of full factorial design were used to prepare a sample set consisting of 125 samples of three component mixtures. The concentration ranges of HSA, gamma-globulin and glucose were 0.00-6.00 g dl(-1), 0.00-4.00 g dl(-1) and 0.00-2.00 g dl(-1), respectively. The 125 sample data were split into two sets, the calibration set with 95 data and the prediction set with 30 data. The most informative spectral ranges of 4648-4323, 4647-4255 and 4912-4304 cm(-1) were selected by moving window partial least-squares regression (MWPLSR) for HSA, [gamma]-globulin, and glucose in the mixtures, respectively. For HSA, the correlation coefficient (R) of 0.9998 and the root mean square error of prediction (RMSEP) of 0.0289 g dl(-1) were obtained. For [gamma]-globulin, R of 0.9997 and RMSEP of 0.0252 g dl(-1) were obtained. The corresponding statistic values of glucose were 0.9997 and 0.0156 g dl(-1), respectively. These statistical values obtained by MWPLSR are highly significant and better than those calculated by using the regions reported in the literature. The results presented here show that MWPLSR can select the informative regions with a simple procedure and increase the power of NIR spectroscopy for simultaneous determination of the concentrations of HSA, [gamma]-globulin and glucose in the mixture systems.  相似文献   

7.
This paper proposes an analytical method for simultaneous near-infrared (NIR) spectrometric determination of α-linolenic and linoleic acid in eight types of edible vegetable oils and their blending. For this purpose, a combination of spectral wavelength selection by wavelet transform (WT) and elimination of uninformative variables (UVE) was proposed to obtain simple partial least square (PLS) models based on a small subset of wavelengths. WT was firstly utilized to compress full NIR spectra which contain 1413 redundant variables, and 42 wavelet approximate coefficients were obtained. UVE was then carried out to further select the informative variables. Finally, 27 and 19 wavelet approximate coefficients were selected by UVE for α-linolenic and linoleic acid, respectively. The selected variables were used as inputs of PLS model. Due to original spectra were compressed, and irrelevant variables were eliminated, more parsimonious and efficient model based on WT-UVE was obtained compared with the conventional PLS model with full spectra data. The coefficient of determination (r2) and root mean square error prediction set (RMSEP) for prediction set were 0.9345 and 0.0123 for α-linolenic acid prediction by WT-UVE-PLS model. The r2 and RMSEP were 0.9054, 0.0437 for linoleic acid prediction. The good performance showed a potential application using WT-UVE to select NIR effective variables. WT-UVE can both speed up the calculation and improve the predicted results. The results indicated that it was feasible to fast determine α-linolenic acid and linoleic acid content in edible oils using NIR spectroscopy.  相似文献   

8.
《Analytical letters》2012,45(2):340-348
Synchronous 2D correlation spectroscopy was first proposed to select informational spectral intervals in PLS calibration. The proposed method could extract the spectral intervals related to analyte. The results of its application to NIR/PLS determination of quercetin in extract of Ginkgo biloba leaves showed that the proposed method could find out an optimized region with which one could improve the performance of the corresponding PLS model, in terms of low prediction error, root mean square error of prediction (RMSEP), and comparing with the result obtained using whole spectra and interval PLS.  相似文献   

9.
Fluorescence spectrum, as well as the first and second derivative spectra in the region of 220–900 nm, was utilized to determine the concentration of triglyceride in human serum. Nonlinear partial least squares regression with cubic B‐spline‐function‐based nonlinear transformation was employed as the chemometric method. Window genetic algorithms partial least squares (WGAPLS) was proposed as a new wavelength selection method to find the optimized spectra wavelengths combination. Study shows that when WGAPLS is applied within the optimized regions ascertained by changeable size moving window partial least squares (CSMWPLS) or searching combination moving window partial least squares (SCMWPLS), the calibration and prediction performance of the model can be further improved at a reasonable latent variable number. SCMWPLS should start from the sub‐region found by CSMWPLS with the smallest root mean squares error of calibration (RMSEC). In addition, WGAPLS should be utilized within the region of smallest RMSEC whether it is the sub‐region found by CSMWPLS or region combination found by SCMWPLS. Moreover, the prediction ability of nonlinear models was better than the linear models significantly. The prediction performance of the three spectra was in the following order: second derivative spectrum < original spectrum < first derivative spectrum. Wavelengths within the region of 300–367 nm and 386–392 nm in the first derivative of the original fluorescence spectrum were the optimized wavelength combination for the prediction model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
王国庆  邵学广 《分析化学》2005,33(2):191-194
用遗传算法(GA)与交互检验(CV)相结合建立了一种用于对近红外光谱(NIR)数据及其离散小波变换(DWT)系数进行变量筛选的方法,并应用于烟草样品中总挥发碱和总氮的同时测定。结果表明:NIR数据经DWT压缩为原始大小的3.3%时基本没有光谱信息的丢失;有效的变量筛选可以极大地减少模型中的变量个数,降低模型的复杂程度,改善预测的准确度。  相似文献   

11.
Near infrared (NIR) spectroscopy was employed for simultaneous determination of methanol and ethanol contents in gasoline. Spectra were collected in the range from 714 to 2500 nm and were used to construct quantitative models based on partial least squares (PLS) regression. Samples were prepared in the laboratory and the PLS regression models were developed using the spectral range from 1105 to 1682 nm, showing a root mean square error of prediction (RMSEP) of 0.28% (v/v) for ethanol for both PLS-1 and PLS-2 models and of 0.31 and 0.32% (v/v) for methanol for the PLS-1 and PLS-2 models, respectively. A RMSEP of 0.83% (v/v) was obtained for commercial samples. The effect of the gasoline composition was investigated, it being verified that some solvents, such as toluene and o-xylene, interfere in ethanol content prediction, while isooctane, o-xylene, m-xylene and p-xylene interfere in the methanol content prediction. Other spectral ranges were investigated and the range 1449-1611 nm showed the best results.  相似文献   

12.
Partial least squares (PLS) and principal component regression (PCR) have received considerable attention in the chemometrics for multicomponent analysis where superiority of one over another is a challenging problem yet. Considering the effect of wavelength selection, a comparison was made between PCR and PLS methods by application those to simultaneous spectrophotometric determination of diphenylamine (DPA), a compound from the third European Union list of priority pollutants, and its environmentally related products aniline and phenol. The UV absorbance spectra of the methanolic solutions of the analytes were measured in the concentration ranges of 1.0-10.0 microg mL(-1) and then subjected to PCR and PLS. The models refinement procedure and validation was performed by cross-validation. A modified changeable size moving windows strategy, where optimized the intervals between the sensors in a selected windows, was also proposed to select the more informative spectral regions for each of the analytes. It was found that wavelength selection improved the quality of predictions for both regression methods whereas more reliable results were obtained by removing of the highly collinear neighboring wavelengths. The resultant data explained that PLS produced more or less better results when whole spectral data were used but in the case of selected wavelength regions both methods produced similar results and no comments could be given about the superiority of one against another. The major difference was obtaining the higher number of factors for PCR, which is not a significant problem.  相似文献   

13.
An exploration was made to develop a determination method of a low-concentration analyte by NIR spectroscopy. An absorber, silica gel was employed to extract and enrich a low-concentration analyte of ethyl carbamate. The solid absorber with the enriched analyte was measured by NIR spectroscopy in the range of 800 - 2500 nm. Afterwards, PLS regression was performed between the NIR spectra and the concentrations of the analyte for quantitative analysis of the low-concentration analyte. The spectra of 20 solid samples of analyte-absorbed silica gel showed a good correlation with the concentrations of ethyl carbamate in the samples. A leave-one-out cross validation was applied to evaluate the prediction ability of PLS models built with the full spectra, spectra in the region of 1920 - 1970 nm and the region of 2250 - 2430 nm, respectively. The values of the root-mean-square error of the cross validation (RMSECV) were about 0.1 mg L(-1) (0.1 ppm).  相似文献   

14.
利用近红外光谱技术对食用植物油中反式脂肪酸(Trans fatty acids,TFA)含量进行快速定量检测,并通过波段选择、预处理方法、变量筛选及建模方法对TFA含量预测模型进行优化.采用AntarisⅡ傅里叶变换近红外光谱仪在4000~10000 cm-1光谱范围采集98个食用植物油样本的近红外透射光谱,然后采用气相色谱法测定TFA的真实含量.首先,对样本原始光谱进行波段、预处理方法优选;在此基础上,采用竞争自适应重加权法(Competitive adaptive reweighted sampling,CARS)筛选TFA相关的重要变量,最后应用主成分回归、偏最小二乘和最小二乘支持向量机方法分别建立食用植物油中TFA含量的预测模型.研究结果表明,近红外光谱技术检测食用植物油中的TFA含量是可行的,优化后的最佳预测模型的校正集和预测集R2分别为0.992和0.989,RMSEC和RMSEP分别为0.071%和0.075%.最佳预测模型所用的变量仅26个,占全波段变量的0.854%.此外,与全波段偏最小二乘预测模型相比,其预测集R2由0.904上升为0.989,RMSEP由0.230%下降为0.075%.由此表明,模型优化非常必要,CARS能有效筛选TFA相关的重要变量,极大减少建模变量数,从而简化预测模型,并较大提高预测模型的精度和稳定性.  相似文献   

15.
In this work, the development of a robust spectroscopic procedure for determining, simultaneously and non-destructively, relevant quality parameters of processed tomato products (total and soluble solids, total acidity, total sugars, glucose and fructose), is described. Samples of tomato concentrate products with total solids content ranging from 6.9 to 35.9% were collected from Latin America, the US and Europe and NIR spectra were acquired in the 4000-10,000 cm(-1) region. The original spectra were pre-processed by mean-smoothing or by Fourier filter, followed by multiplicative signal correction (MSC) or derivatives. Partial least squares (PLS2 and PLS1) models were built and their predictive abilities were compared through the RMSEP of external validation. The PLS2 regression had better predictive abilities for four out of the six properties under study, namely total solids, total sugars, glucose and fructose. Besides, the model was less complex than the PLS1 models in the sense that only four factors were demanded whilst from 4 to 11 factors were necessary for building the PLS1 models. The standard error of prediction (SEP%) of the PLS2 model for each property was: total solids, 2.67; soluble solids, 1.14; total acidity, 9.60; total sugar, 18.69; glucose, 11.60; and fructose, 13.45.  相似文献   

16.
Silica-based monolithic column material was synthesized and an enrichment device was fabricated with the material by assembling the material inside a glass column.The enrichment device was applied for the determination of micro-carbaryl with near-infrared spectroscopy(NIRS).The aqueous solutions of carbaryl passed through the device and the carbaryl was enriched on the surface of the material where diffuse reflection NIR spectra were measured.These procedures of enrichment and measurement ensured to conc...  相似文献   

17.
提出了一种基于在线膜富集的近红外漫反射光谱技术,对饮料中的微量塑化剂邻苯二甲酸二异辛酯(DEHP)进行快速检测。采用聚醚砜膜对饮料中的DEHP进行富集,将富集DEHP的膜直接进行近红外漫反射检测。参考DEHP的透射近红外光谱,对波数进行选择,以4 420~4 060、4 700~4 540、6 040~5 600cm-1作为建模的波数区间。通过比较原始光谱、多元散射校正、一阶求导、二阶求导及其组合,考察了光谱预处理方法对模型的影响,用去一交互验证法建立了偏最小二乘(PLS)模型,并用所建立的校正模型对校正集样品进行了预测。结果表明,在选定的波数区间,当用一阶求导对校正集光谱进行预处理时,所建立的模型对校正集的预测效果最佳,在隐变量数为7时,对校正集所有样品的校正均方根误差(RMSEC)为0.188 7mg/L。用此模型对预测集样品进行预测时,DEHP的质量浓度在0.5~5.0 mg/L范围内,预测均方根误差(RMSEP)为0.232 4 mg/L,平均相对预测误差为6.29%。  相似文献   

18.
The main purpose of this study was to investigate the relationship between some coffee roasting variables (weight loss, density and moisture) with near infrared (NIR) spectra of original green (i.e. raw) and differently roasted coffee samples, in order to test the availability of non-destructive NIR technique to predict coffee roasting degree. Separate calibration and validation models, based on partial least square (PLS) regression, correlating NIR spectral data of 168 representatives and suitable green and roasted coffee samples with each roasting variable, were developed. Using PLS regression, a prediction of the three modelled roasting responses was performed. High accuracy results were obtained, whose root mean square errors of the residuals in prediction (RMSEP) ranged from 0.02 to 1.23%. Obtained data allowed to construct robust and reliable models for the prediction of roasting variables of unknown roasted coffee samples, considering that measured vs. predicted values showed high correlation coefficients (r from 0.92 to 0.98). Results provided by calibration models proposed were comparable in terms of accuracy to the conventional analyses, revealing a promising feasibility of NIR methodology for on-line or routine applications to predict and/or control coffee roasting degree via NIR spectra.  相似文献   

19.
基于群体智能的灰狼优化(GWO)算法具有参数少、结构简单、易于实现的优点,但在光谱领域的应用较少。该研究将GWO算法引入近红外光谱的变量筛选中,以玉米数据为例,考察了GWO算法中狼群性能、迭代次数、狼群数量及运算效率,并建立了偏最小二乘(PLS)模型对玉米样品中蛋白质、脂肪、水分以及淀粉含量的测定。结果显示,GWO算法运算效率很高,经过参数调优后建立PLS模型,其蛋白质、脂肪、水分及淀粉的保留变量数分别为19、19、14、34,预测均方根误差(RMSEP)从全波长PLS建模的0.245 8、0.122 4、0.339 8、1.105 8分别下降到0.147 7、0.080 1、0.176 2、0.739 8,分别下降了40%、35%、48%、33%,相关系数也相应地提高。因此,GWO算法不仅优化速度快,选择变量数少,还可以显著提高PLS模型的预测精度,是一种近红外光谱变量选择的有效方法。  相似文献   

20.
Near infrared (NIR) reflectance and Raman spectrometry were compared for determination of the oil and water content of olive pomace, a by-product in olive oil production. To enable comparison of the spectral techniques the same sample sets were used for calibration (1.74–3.93% oil, 48.3–67.0% water) and for validation (1.77–3.74% oil, 50.0–64.5% water). Several partial least squares (PLS) regression models were optimized by cross-validation with cancellation groups, including different spectral pretreatments for each technique. Best models were achieved with first-derivative spectra for both oil and water content. Prediction results for an independent validation set were similar for both techniques. The values of root mean square error of prediction (RMSEP) were 0.19 and 0.20–0.21 for oil content and 2.0 and 1.8 for water content, using Raman and NIR, respectively. The possibility of improving these results by combining the information of both techniques was also tested. The best models constructed using the appended spectra resulted in slightly better performance for oil content (RMSEP 0.17) but no improvement for water content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号