首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The thermally stable silylene Si[(NCH2But)2C6H4-1,2] 1 undergoes oxidative addition reactions with the lithium amides LiNRR'(R = SiMe3, R' = But; R = SiMe3, R' = C6H3Me2-2,6; R = R' = Me or R = R' = Pri) to afford the new lithium amides Li(THF)2[N(R)Si(SiMe3){(NCH2But)2C6H4-1,2}][R = But2 or R = C6H3Me2-2,6 (3a)] or the new tris(amino)functionalised silyllithiums Li(THF)x[Si{(NCH2But)2C6H4-1,2}NRR'][R = SiMe3, R' = C6H3Me2-2,6, x = 2 (3); R = R'= Me, x = 3 (4) or R = R' = Pri, x = 3 (5)]. Compounds 4 and 5 are stable at ambient temperature but compound 3 is thermally labile and converts into 3a upon heating. The pathway for the formation of 2 and 3 is discussed and the X-ray structures of 2-5 are presented.  相似文献   

2.
Zhou M  Gong T  Qiao X  Tong H  Guo J  Liu D 《Inorganic chemistry》2011,50(5):1926-1930
Treatment of the appropriate lithium or sodium 2,4-N,N'-disubstituted 1,3,5-triazapentadienate [RNC(R')NC(R')N(SiMe(3))M](2) (R = Ph, 2,6-(i)Pr(2)-C(6)H(3)(Dipp) or SiMe(3); R' = NMe(2) or 1-piperidino; M = Li or Na) with one or half equivalent portion of MgBr(2)(THF)(2) in Et(2)O under mild conditions furnishes in good yield the first structurally characterized molecular magnesium 2,4-N,N'-disubstituted 1,3,5-triazapentadienates [DippNC(NMe(2))NC(NMe(2))N(SiMe(3))MgBr](2) (1), [{RNC(R')NC(R')N(SiMe(3))}(2)Mg] (R = Ph, R' = NMe(2) 2; R = Ph, R' = 1-piperidino 3; R = SiMe(3), R' = 1-piperidino 4). The solid-state structure of 1 is dimeric and those of 2, 3, and 4 are monomeric. The ligand backbone NCNCN in 1 adopts a W-shaped configuration, while in 2, 3 and 4 adopts a U-shaped configuration.  相似文献   

3.
Reactions of lithium dialkyl/phenyl phosphanylmethylides, RR'PCH(X)Li (R, R' = Me, Et, Ph and R = Me, R' = Ph; X = H or Me), with sulfur diimides S(NR')2 (R' = (t)Bu or SiMe3) in an equimolar ratio yielded Janus head complexes with the structural motif [Li{RR'PCH(X)S(NR')2}]2 (R' = (t)Bu, SiMe3). The basic core of these dimeric complexes is composed of a (LiN)(2) four-membered ring containing two four-coordinated lithium atoms. A lithium complex of the new Janus head ligand with another structural motif [TMEDA·Li{Ph(2)PCH(2)S(NSiMe3)2}] (6) could be isolated from the reaction of [Ph2PCH2Li·TMEDA] with S(NSiMe3)2. Two monomeric complexes [Mg{Me2PCH2S(NR')2}2] (7, 8) were synthesised by a straightforward reaction of [Li{Me2PCH2S(NR')2}2] with MgCl2 in pentane. The magnesium atom is chelated by one phosphorus atom and two nitrogen atoms of each unit of the hemilabile ligand in a tripodal manner, leading to octahedral geometry around the magnesium cation. A complete analysis of [Ph2PCH2(SNSiMe3)(HNSiMe3)] (9) is also described in which one nitrogen atom of the imido moiety is protonated.  相似文献   

4.
A series of lithium complexes were prepared from 2(N-piperazinyl-N'-methyl)-2-methylene-4-R'-6-R-phenols ([ONN](RR')) and characterized through elemental analysis, (1)H and (13)C{(1)H} NMR spectroscopy, and X-ray crystallography. Treatment of the ligands with n-butyllithium afforded {Li[ONN](RR')}(3) [R = Me, R' = (t)Bu, (1); R = R' = (t)Bu (2); R = R' = (t)Am, (3), (t)Am = C(CH(3))(2)CH(2)CH(3)], with trimetallic structures in the solid-state as shown by single-crystal X-ray diffraction. The reactivity of these complexes in the ring-opening polymerization of ε-caprolactone (ε-CL), as well as the influences of monomer concentration, monomer/Li molar ratio, polymerization temperature and time, was studied. Rates of polymerization were first order with respect to both monomer and lithium concentrations, and activation energies for the reactions were determined. MALDI-TOF MS analysis revealed that transesterification had occurred during the polymerization.  相似文献   

5.
The dilithiated boraamidinate complexes [Li(2)[PhB(NDipp)(2)](THF)(3)] (7a) (Dipp = 2,6-diisopropylphenyl) and [Li(2)[PhB(NDipp)(N(t)Bu)](OEt(2))(2)] (7b), prepared by reaction of PhB[N(H)Dipp][N(H)R'] (6a, R' = Dipp; 6b, R' = (t)Bu) with 2 equiv of (n)BuLi, are shown by X-ray crystallography to have monomeric structures with two terminal and one bridging THF ligands (7a) or two terminal OEt(2) ligands (7b). The derivative 7a is used to prepare the spirocyclic group 13 derivative [Li(OEt(2))(4)][In[PhB(NDipp)(2)](2)] (8a) that is shown by an X-ray structural analysis to be a solvent-separated ion pair. The monoamino derivative PhBCl[N(H)Dipp] (9a), obtained by the reaction of PhBCl(2) with 2 equiv of DippNH(2), serves as a precursor for the synthesis of the four-membered BNCN ring [[R'N(H)](Ph)B(mu-N(t)Bu)(2)C(n)Bu] (10a, R' = Dipp). The X-ray structures of 6a, 9a, and 10a have been determined. The related derivative 10b (R' = (t)Bu) was synthesized by the reaction of [Cl(Ph)B(mu-N(t)Bu)(2)C(n)Bu] with Li[N(H)(t)Bu] and characterized by (1)H, (11)B, and (13)C NMR spectra. In contrast to 10a and 10b, NMR spectroscopic data indicate that the derivatives [[DippN(H)](Ph)B(NR')(2)CR(NR')] (11a: R =( t)Bu, R' = Cy; 11b: R = (n)Bu, R' = Dipp) adopt acyclic structures with three-coordinate boron atoms. Monolithiation of 10a produces the novel hybrid boraamidinate/amidinate (bamam) ligand [Li[DippN]PhB(N(t)Bu)C(n)Bu(N(t)Bu)] (12a).  相似文献   

6.
Lithium Salts of Tris(trimethylsilylamino)silane - Their Structures in Solution and in the Solid State* Amides, which result from the reaction of tris(trimethylsilylamino)silane (Me3SiNH)3SiH ( 1 ) with n-butyllithium in the molar ratio 1:1 and 1:2 in nonpolar solvents, form a system in which the aminosilane 1 , the monoamide (Me3SiNLi)(Me3SiNH)2SiH ( 2a ), the diamide (Me3SiNLi)2(Me3SiNH)SiH ( 3 ), and the triamide (Me3SiNLi)3SiH ( 4 ) are in equilibrium. When the monoamide 2a is dissolved in THF only the dimeric monolithiated THF adduct 2b is obtained. An X-ray structure analysis of the lithium silylamide 2b reveals that in the dimeric unit one of the lithium atoms is coordinated by THF, the two lithium atoms thus differing in coordination number (3 versus 4). An X-ray study of the triamide 4 reveals a centrosymmetric polycycle. Multipole interactions are formed between the lithium and the nitrogen atoms. The reaction of the diamide 3 with chlorotrimethylsilane in boiling THF yields the cis isomer of the cyclic diamide [(Me3SiNLi)(Me3SiNH)SiN(SiMe3)]2· 2 THF ( 5 ) as a byproduct. According to an X-ray structure analysis of 5 the lithium centers are coordinated by one oxygen and three nitrogen atoms, which form a strongly distorted tetrahedron. The interactions between lithium and nitrogen atoms N(1) and N(2), which are part of the four-membered Si2N2 cycle, have to be considered as weak on the basis of the remarkably long Li-N distances (233 and 243 pm).  相似文献   

7.
Synthesis of the title compounds, viz. [RN(CH2CHR'O)2]2Ge (1, R = Me, R' = H; 2, R = Me, R' = Ph; 3, R = Ph, R' = H), by the reaction of 2 equiv of corresponding dialkanolamines RN(CH2CHR'OH)2 (4, R = Me, R' = H; 5, R = Me, R' = Ph; 6, R = Ph, R' = H) with (AlkO)4Ge is reported. Composition and structures of all novel compounds were established by 1H and 13C NMR spectroscopy and mass spectrometry as well as elemental analysis data. The single-crystal X-ray diffraction of 2 has clearly indicated the presence of two transannular interactions Ge<--N in the compound. N atoms are cis-orientated. The compound 3 possesses long Ge...N distances. The structural data obtained from geometry optimizations by DFT calculations on 1-3 reproduces experimental results. Both cis- and trans-isomers were studied, and cis-configuration was found to be more thermodynamically stable for all three compounds. The transition states for possible cis <--> trans rearrangement processes in 1-3 were calculated. The properties of the Ge-O and Ge<--N bonds in 1-3 were analyzed by the AIM approach. The interactions between the Ge atom and N atoms as well as O atoms possess predominantly ionic character.  相似文献   

8.
A series of new (silylamino)phosphines that contain sterically bulky silyl groups on nitrogen were prepared by deprotonation/substitution reactions of the hindered disilylamines t-BuR(2)Si(Me(3)Si)NH (1, R = Me; 2, R = Ph) and (Et(3)Si)(2)NH (3). Sequential treatment of the N-lithio derivatives of 1-3 with PCl(3) or PhPCl(2) and MeLi gave the corresponding (silylamino)phosphines t-BuR(2)Si(Me(3)Si)NP(R')Me (5, R = Me, R' = Ph; 6, R = Ph, R' = Me) and (Et(3)Si)(2)NP(R)Me (11, R = Me; 12, R = Ph) in high yields. Two of the P-chloro intermediates t-BuR(2)Si(Me(3)Si)NP(Ph)Cl (7, R = Ph; 9, R = Me) were also isolated and fully characterized. Hydrolysis of 7 afforded the crystalline PH-substituted aminophosphine oxide t-BuPh(2)SiN(H)P(Ph)(=O)H (10). Thermal decomposition of 7 occurred with elimination of Me(3)SiCl and formation of a novel P(2)N(2) four-membered ring system (36) that contains both P(III) and P(V) centers. Reactions of the N-lithio derivatives of amines 1 and 2 with phosphorus trihalides afforded the thermally stable -PF(2) derivatives t-BuR(2)Si(Me(3)Si)NPF(2) (13, R = Me; 14, R = Ph) and the unstable -PCl(2) analogue 17 (R = Ph). Reduction (using LiAlH(4)) of the SiPh-substituted dihalophosphines 14 and 17 gave the unstable parent phosphine t-BuPh(2)Si(Me(3)Si)NPH(2) (15). The P-organo-substituted (silylamino)phosphines underwent oxidative bromination to afford high yields of the corresponding N-silyl-P-bromophosphoranimines t-BuR(2)SiN=P(R')(Me)Br (18, R = R' = Me; 19, R = Me, R' = Ph; 20, R = Ph, R' = Me) and Et(3)SiN=P(R)(Me)Br (23, R = Me; 24, R = Ph). Subsequent treatment of these reactive PBr compounds with lithium trifluoroethoxide or phenoxide produced the corresponding PO derivatives t-BuR(2)SiN=P(R')(Me)OR' ' (25 and 26, R' ' = CH(2)CF(3); 28-30, R' ' = Ph) and Et(3)SiN=P(R)(Me)OR' (31 and 33, R' = CH(2)CF(3); 32 and 34, R = Ph), respectively. Many of the new compounds containing the bulky tert-butyldiphenylsilyl group, t-BuPh(2)Si, were solids that gave crystals suitable for X-ray diffraction studies. Consequently, the crystal structures of three (silylamino)phosphines (6, 7, and 14), one (silylamino)phosphine oxide (10), one N-silylphosphoranimine (30), and the cyclic compound 36 were determined. Among the (silylamino)phosphines, the P-N bond distances [6, N-PMe(2), 1.725(3) A; 7, N-P(Ph)Cl, 1.68(1) A, 14, N-PF(2), 1.652(4) A] decreased significantly as the electron-withdrawing nature of the phosphorus substituents increased. The N-silylphosphoranimine t-BuPh(2)SiN=PMe(2)OPh (30), which is a model system for poly(phosphazene) precursors, had a much shorter P=N distance of 1.512(6) A and a wide Si-N-P bond angle of 166.4(3) degrees. A similar P=N bond distance [1.514(7) A] and Si-N-P angle [169.9(6) degrees ] were observed for the exocyclic P=N-Si linkage in the ring compound 36, while the phosphine oxide 10 had P-N and P=O distances of 1.637(4) and 1.496(3) A, respectively, and a Si-N-P angle of 134.3(2) degrees.  相似文献   

9.
The reactions of [Ru-(=CHR)Cl2(PCy3)2] (1: R = Ph; 1a: R = -CH=CPh2) with silver salts of carboxylic acids afforded new dimeric complexes of the general formula [Ru2(=CHR)2-(R'CO2)2(mu-R'CO2)2(PCy3)2(mu-H2O)] (2: R = Ph, R' = CF3; 3: R = Ph, R' = C2F5; 4: R = -CH=CPh2, R' = CF3; 5: R = Ph, R' = C6F5; 6: R = -CH=CPh2, R' = C6F5; 7: R = -CH=CPh2, R'=CCl3) in good yields. With R' = CF3, C2F5 or CCl3 these complexes are active catalysts for metathesis of acyclic alkenes, including unsaturated fatty acid esters, as well as for ring closing metathesis. The reactivity of these complexes with bases and weak donor solvents has been studied and their half-life times in several media were determined.  相似文献   

10.
A series of 2-iminopyrrole ligand precursors with increasing bulkiness [HNC4H3C(R)=N-2,6-R'2C6H3] (R = R' = H, 1a; R = Me, R'= H, 1b; R = H, R' = Me, 1c; R = R' = Me, 1d; R = H, R' = iPr, 1e; R = Me, R' = iPr, 1f) were synthesized and deprotonated with NaH to give the corresponding iminopyrrolyl sodium salts 2a-f. A set of homoleptic bis-ligand Co(II) complexes of the type [Co(kappa2N,N'-NC4H3C(R)=N-2,6-R'2C6H3)2] (R = R'= H, 3a; R = Me, R'= H, 3b; R = H, R' = Me, 3c; R = R' = Me, 3d; R = H, R' = iPr, 3e; R = Me, R' = iPr, 3f) was prepared by reaction of CoCl2 with the corresponding iminopyrrolyl sodium salts 2a-f. The new complexes were characterized by elemental analysis, magnetic susceptibility measurements, in powder and in solution, UV/vis/NIR, and, in some cases, X-ray crystallography. According to X-ray diffraction and magnetic measurements, the Co complexes 3a-e proved to be tetrahedral, which is the preferred geometry for Co(II) compounds. However, a square planar geometry is observed in the case of 3f, as determined by several characterization techniques. In this case, DFT calculations suggest the square planar geometry is slightly more stable than the tetrahedral one probably due to a combination of steric and electronic reasons.  相似文献   

11.
Condensation of phenyl isocyanate substituted by 4-MeO, 4-Me, 4-H, 4-Br, and 2,4-(MeO)(2) with esters CH(2)(CO(2)R)CO(2)R', R = CH(2)CF(3), R' = CH(3), CH(2)CF(3), CH(CF(3))(2), or R = CH(3), R' = CH(CF(3))(2) gave 17 "amides" ArNHCOCH(CO(2)R)CO(2)R' containing three, six, or nine fluorines in the ester groups. X-ray crystallography of six of them revealed that compounds with > or =6 fluorine atoms exist in the solid state as the enols of amides ArNHC(OH)=C(CO(2)R)CO(2)R' whereas the ester with R = R' = CH(3) was shown previously to have the amide structure. In the solid enols, the OH is cis and hydrogen bonded to the better electron-donating (i.e., with fewer fluorine atoms) ester group. X-ray diffraction could not be obtained for compounds with only three fluorine atoms, i.e., R = CH(2)CF(3), R' = CH(3) but the (13)C CP-MAS spectra indicate that they have the amide structure in the solid state, whereas esters with six and nine fluorine atoms display spectra assigned to the enols. The solid enols show unsymmetrical hydrogen bonds and the expected features of push-pull alkenes, e.g., long C(alpha)=C(beta) bonds. The structure in solution depends on the number of fluorine atoms and the solvent, but only slightly on the substituents. The symmetrical systems (R = R' = CH(2)CF(3)) show signals for the amide and the enol, but all systems with R not equal R' displayed signals for the amide and for two enols, presumably the E- and Z-isomers. The [Enol I]/[Enol II] ratio is 1.6-2.9 when R = CH(2)CF(3), R' = CH(3), CH(CF(3))(2) and 4.5-5.3 when R = CH(3), R' = CH(CF(3))(2). The most abundant enol display a lower field delta(OH) and a higher field delta(NH) and assigned the E-structure with a stronger O-H.O=C(OR) hydrogen bond than in the Z-isomer. delta(OH) and delta(NH) values are nearly the same for all systems with the same cis CO(2)R group. The [Enols]/[Amide] ratio in various solvents follows the order CCl(4) > CDCl(3) > CD(3)CN > DMSO-d(6). The enols always predominate in CCl(4) and the amide is the exclusive isomer in DMSO-d(6) and the major one in CD(3)CN. In CDCl(3) the major tautomer depends on the number of fluorines. For example, in CDCl(3,) for Ar = Ph, the % enol (K(Enol)) is 35% (0.54) for R = CH(2)CF(3,) R' = CH(3), 87% (6.7) for R = R' = CH(2)CF(3), 79% (3.8) for R = CH(3), R' = CH(CF(3))(2) and 100% (> or =50) for R = CH(2)CF(3), R' = CH(CF(3))(2). (17)O and (15)N NMR spectra measured for nine of the enols are consistent with the suggested assignments. The data indicate the importance of electron withdrawal at C(beta), of intramolecular hydrogen bonding, and of low polarity solvents in stabilizing the enols. The enols of amides should no longer be regarded as esoteric species.  相似文献   

12.
Vinylgallium compounds [C(6)H(6-n){(H)C=C(SiR(2) R')-GaR'(2)}(n ] (3, R=Ph, Me; R'=Ph, Me; R'=tBu, Et; n=1, 2) are easily accessible by hydrogallation of the corresponding alkynylbenzene derivatives with H-GaCl(2) and subsequent reaction with alkyllithium derivatives. Treatment of 3 with an excess amount of tert-butyl- or ethyllithium yielded by transmetalation and ortho-deprotonation of the aromatic rings the unprecedented solvent-free oligolithium cluster compounds [{(C(6)H(4)Li)HC=C(SiPh(3))Li}(2)(tBuLi)(2)] (4), [{(C(6)H(4)Li)HC=C(SiPh(2)Me)Li}(4)] (5) and [{(C(6)H(3)Li){HC=C(SiMe(3))Li}(2)}(3)] (6) in moderate yields. Their solid-state structures revealed the presence of unique molecular lithium clusters with 6, 8, or 9 lithium atoms that may be derived from two edge-sharing Li(4) tetrahedra (4), three Li(4) tetrahedra in a chain joined by two common edges (5) or a tricapped trigonal prism of lithium atoms (6).  相似文献   

13.
1 TRODUCTIINON The monoanionic b-diketiminato ligands, [ArNC(R)CHC(R)NAr]- [1], are ideal for use with metals and have been applied for early[2] and late[3] transition metals and group 13 metal complexes[4]. These ligands have several attractive feature…  相似文献   

14.
The reaction of anhydrous YbCl3 with lithium β-diketiminate, LLi (L=N,Ndiphenyl-2,4-pentanediimine anion), in 1:1 molar ratio in THF gave rise to the title complex LYbCl2(THF)2 1 which has been characterized by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group Pna21(#33) with a=19.657(8), b=9.581(4), c=14.107(6) A,V=2656.8(18) A3, Z=4, C25H33N2O2Cl2Yb, Mr= 637.49, Dc=1.594 g/cm3, F(000)=1268.00 and μ (MoKα)=3.744mm- 1. The final R and wR are 0.031 and 0.073 for 2596 observed reflections with I > 2σ(I), respectively. The X-ray crystal structure analysis revealed that the center ytterbium(Ⅲ) is bonded to two chloride anions, two oxygen atoms from two tetrahydrofuran molecules and one chelate ligand β-diketiminate to form a six-coordinate distorted octahedral geometry.  相似文献   

15.
The novel organophosphorus-containing lithium salt Li(THF)[(C(2)O(4))B(O(2)PPh(2))(2)] (1; THF = tetrahydrofuran) was synthesized and characterized using a variety of spectroscopic techniques. An X-ray structural analysis on crystals of 1 grown from THF reveals a dimeric structure [Li(THF)(C(2)O(4))B(O(2)PPh(2))(2)](2)·THF, whereby the two units of 1 are bridged via P-O···Li interactions. Compound 1 displays high air and water stability and is also thermally robust, properties needed of electrolytes for their possible use as electrolytes and/or additives in lithium-ion battery applications.  相似文献   

16.
The synthesis and characterisation of novel Li and Yb complexes is reported, in which the monoanionic beta-diketiminato ligand has been (i) reduced (SET or 2 [times] SET), (ii) deprotonated, or (iii) C-N bond-cleaved. Reduction of the lithium beta-diketiminate Li(L(R,R'))[L(R,R')= N(SiMe(3))C(R)CHC(R')N(SiMe(3))] with Li metal gave the dilithium derivative [Li(tmen)(mu-L(R,R'))Li(OEt(2))](R = R'= Ph; or, R = Ph, R[prime or minute]= Bu(t)). When excess of Li was used the dimeric trilithium [small beta]-diketiminate [Li(3)(L(R,R[prime or minute]))(tmen)](2)(, R = R'= C(6)H(4)Bu(t)-4 = Ar) was obtained. Similar reduction of [Yb(L(R,R'))(2)Cl] gave [Yb[(mu-L(R,R'))Li(thf)](2)](, R = R[prime or minute]= Ph; or, R = R'= C(6)H(4)Ph-4 = Dph). Use of the Yb-naphthalene complex instead of Li in the reaction with [Yb(L(Ph,Ph))(2)] led to the polynuclear Yb clusters [Yb(3)(L(Ph,Ph))(3)(thf)], [Yb(3)(L(Ph,Ph))(2)(dme)(2)], or [Yb(5)(L(Ph,Ph))(L(1))(L(2))(L(3))(thf)(4)] [L(1)= N(SiMe(3))C(Ph)CHC(Ph)N(SiMe(2)CH(2)), L(2)= NC(Ph)CHC(Ph)H, L(3)= N(SiMe(2)CH(2))] depending on the reaction conditions and stoichiometry. The structures of the crystalline complexes 4, 6x21/2(hexane), 5(C(6)D(6)), and have been determined by X-ray crystallography (and have been published).  相似文献   

17.
Stable (N-aryl)- and (N-alkyl)dialkylsilaketenimines R2SiCNR' [R = 1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl, R' = 2,6-diisopropylphenyl (2a) and 1-adamantyl (2b)] were synthesized as blue and red crystals by the reactions of isolable dialkylsilylene 3 with 2,6-diisopropylphenyl isocyanide and 1-adamantyl isocyanide. X-ray single-crystal analysis disclosed that molecular structures of 2a and 2b were close to each other and were characterized to be allenic rather than zwitterionic or a silylene-isocyanide complex. The bonding characteristics of silaketenimines are found to be affected strongly by the substituents on silicon and nitrogen atoms. Remarkable red-shift of the pi(Si=C) --> pi*(C=N) band of 2a [lambdamax/nm (epsilon) 647(156)] compared with that of 2b [465 nm (109)] is ascribed to lowering of the pi*(C=N) orbital level due to significant interaction between pi*(C=N) and pi*(N-aryl) orbitals.  相似文献   

18.
四甲基二硅桥连取代环戊二烯基配体相继与丁基锂及MCl4·2THF作用,生成四甲基二硅桥连取代环戊二烯基钛和锆化合物(Me2SiSiMe2)(C5H4R)(C5H4R')MCl2[R=H,R'=t-Bu,M=Ti(1),Zr(2),Hf(3);R=H,R'=Me,M=Ti(4);R=R'=Me,M=Ti(5),Zr(6)].通过元素分析、MS和1HNMR谱表征了化合物的分子结构,并通过X射线衍射分析测定了化合物1的晶体结构.研究了在甲基铝氧烷(MAO)的助催化下,化合物1-3和6对乙烯聚合的催化性能。  相似文献   

19.
Phenylthiomethyllithium/N,N,N′,N′-tetramethylethylenediamine (TMEDA) (1:1) is shown by X-ray analysis to be dimeric in the crystalline state. The structural unit contains a six-membered ring in which each Li is bonded to the terminal C atom of one thioanisole and to the S atom of the other, as well as to the two N atoms of a TMEDA. Methylthiomethyllithium/TMEDA (1:1) is also dimeric, but the structural unit contains a four-membered ring in which each Li is bonded to two C atoms and to the two TMEDA N atoms. An error has been detected in an earlier published electron-density difference map for 2-lithio-2-phenyl-1, 3-dithiane/TMEDA/THF (1:1:1). The conclusion drawn then that this complex exists as a tight ion-pair in the crystal is now retracted.  相似文献   

20.
New dinuclear rhodium(II) pyrazolate (Pz) complexes of formula Rh(2)(3-R,5-R'Pz)(4)·2L (R = R' = CF(3), L = H(2)O (1), CH(3)CN (2)) and Rh(2)(3-R,5-R'Pz)(4) (R = R' = (t)Bu (3); R = CF(3), R' = (t)Bu (4)) have been synthesized from the interaction of the lithium salt of the corresponding pyrazole with Rh(2)(OAc)(4) in diethyl ether. The complexes were characterized by X-ray crystallography and spectroscopic methods. They were further evaluated as precursors for the chemical vapor deposition (CVD) of Rh thin films using H(2) as the carrier gas. The resulting films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号