首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cone index (CI), as an indicator of the soil strength, is closely related to the traction performance of tractors. This study evaluates the traction performance of a tractor in terms of the CI during tillage. To analyze the traction performance, a field site was selected and divided into grids, and the CI values at each grid were measured. The CI maps of the field sites were created using the measured CI. The traction performance was analyzed using the measured traction load. The traction performance was grouped at CI intervals of 400 kPa to classify it in terms of the CI. When the CI decreased, the engine speed and tractive efficiency (TE) decreased, while the engine torque, slip ratio, axle torque, traction force, and dynamic traction ratio (DTR) increased. Moreover, the DTR increased up to approximately 13%, and the TE decreased up to 9%. The maximum TE in the DTR range of 0.45–0.55 was higher than approximately 80% for CI values above 1500 kPa. The DTR and TE results obtained in terms of the CI can help efficiently design tractors considering the soil environmental conditions.  相似文献   

2.
A microcontroller-based embedded digital display and warning system was developed for measuring wheel slippage, velocity ratio, PTO torque, and draft requirement of active tillage machinery. The hardware system included magnetic pickup sensor for measuring the engine speed, load cells and amplifiers to measure and amplify the sensing unit signals of the draft, proximity sensors for wheel slip, and PTO torque transducer for measuring the torque requirement. It was provided with buzzers and LEDs to warn the operator, whenever slip and velocity ratio were not in the desired range based on the algorithm, for maximum fuel efficiency and tractive performance. It measured slippage, velocity ratio, torque and draft with a maximum absolute variation of 12.90%, 7.92%, 8.99% and 11.57%, respectively. The developed system can be easily adaptable to any combination of tractor and tillage implements, and guide the operator for better soil tilth with lesser energy input.  相似文献   

3.
Application of rotary tillage has been increased due to less tillage passes required, reduced draft, and greater efficiency through reduction in wheel slippage. Early failure of the bearing of tractor power take-off (PTO) shaft was observed in tractors of power range 30–35 horsepower during rotary tillage. An instrumentation setup involving an extended octagonal ring transducer (EORT) was developed and installed at the bottom of the bearing to measure the axial load and the vertical component of the radial load. The horizontal component of radial load was measured by strain gauges. Based on measured loads, the bearing life was assessed. Independent variables were: operating depth, number of blades, gear setting, engine speed, and tyre size. The average axial and radial loads varied from 786–3869 N, and 134–430 N, respectively. However, bearing experienced very high peak loads during each trial. The peak axial and radial loads was recorded between 1081–7534 N and 566–1794 N, respectively. The estimated bearing life based on peak loads was 171.98–28341.39 h. Based on the findings, it may be concluded that the average loads were not sufficient to cause quick failure of PTO bearing, rather sudden peak loads might be the root cause of early failure.  相似文献   

4.
A tillage depth control system for rotary implements mounted on an agricultural tractor was designed and constructed to improve accuracy of tillage depth. The control system was composed of five main units: (1) a detecting unit to measure the tilting angle (position) of the lift arm, the pitching angle of the tractor and heights of sensors from ground surface, (2) a controlling unit, (3) a hydraulic unit to operate a three-point hitch linkage by a lift arm cylinder, (4) a three-point hitch linkage and rotary implements, and (5) a setting unit to put the reference tillage depth and a dead zone into the control circuit. The tillage depth was controlled by an on/off operation of a solenoid valve, of which time was proportional to the controlling time. Experiments to evaluate the response characteristics of the control system were conducted under various engine speeds, i.e. various flow rates of hydraulic oil, various tillage depths and some input frequencies. The results of the response experiments of the control system are discussed in this paper.  相似文献   

5.
Most previous researches indicate that about 20–55% of available tractor power is lost in the process of interaction between tires and soil surface. Vertical wheel loads and tire performance are parameters that play a significant role in controlling slip and fuel consumption of a tractor. Tractor’s slip is adjusted by attaching additional weights and/or reducing tire pressures, and this may have an impact on driving lead of front wheels. Mechanical Front-Wheel-Drive (MFWD) tractors work efficiently when driving lead of front wheels is 3–4% in soft soil and 1–2% in hard soil. This research was aimed to experimentally determine such tire pressures that allow adjusting tractor’s slip without deviating from set value of driving lead of front wheels. The research was also aimed to determine the effect of driving lead of front wheels on MFWD tractor’s slip and fuel consumption. Experimental results showed that front/rear tire pressure combinations that generate a well-targeted driving lead of front wheels have no effect on slip on hard soil; however, it significantly affect fuel consumption. Results show that when air pressures in front/rear tires varied within 80–220 kPa, driving lead of front wheels varied in the range from +7.25% to −0.5%.  相似文献   

6.
A high precision and compact IOT based digital instrumentation setup to measure, display and record various tractor and implement system performance parameters was developed and installed on a 28.3 kW Tractor. The setup was capable of continuous monitoring and wirelessly transmitting tractor-implement performance parameters on a cloud platform such as engine speed, radiator fan speed, fuel consumption, draft, forward speed, lift arm angle, wheel slip, wheel slip, PTO speed, geo-location/position of the tractor, choking of seeds in the implement and vibrations experienced by the implement. For precision measurements, commercial transducers used in the system were calibrated and assessed under both static and dynamic conditions. The average calibration constant for fuel consumption, forward speed, lift arm angle and load cell were 0.00009804 L/pulse, 0.01610306 km/h/pulse, 0.056 mA/degree and 0.2575 mV/kN respectively. The system based on DataTaker DT 85 Data logger connected to a micro-computer through transducers capable of transferring data wirelessly was installed on John Deere 5038 tractor and was tested with a Spatially Modified No-Till Drill in agricultural field with varied implement depth.  相似文献   

7.
This paper presents a new theoretical model to describe the spatial variability in tillage forces for the purpose of fatigue analysis of tillage machines. The proposed model took into account both the variability in tillage system parameters (soil engineering properties, tool design parameters and operational conditions) and the cyclic effects of mechanical behavior of the soil during failure ahead of tillage tools on the spatial variability in tillage forces. The stress-based fatigue life approach was used to determine the life time of tillage machines, based on the fact that the applied stress on tillage machines is primarily within the elastic range of the material. Stress cycles with their mean values and amplitudes were determined by the rainflow algorithm. The damage friction caused by each cycle of stress was computed according to the Soderberg criterion and the total damage was calculated by the Miner’s law. The proposed model was applied to determine the spatial variability in tillage forces on the shank of a chisel plough. The equivalent stress history resulted from these forces were calculated by means of a finite element model and the Von misses criterion. The histograms of mean stress and stress amplitude obtained by the rainflow algorithm showed significant dispersions. Although the equivalent stress is smaller than the yield stress of the material, the failure by fatigue will occur after a certain travel distance. The expected distance to failure was found to be df = 0.825 × 106 km. It is concluded that the spatial variability in tillage forces has significant effect on the life time of tillage machines and should be considered in the design analysis of tillage machines to predict the life time. Further investigations are required to correlate the results achieved by the proposed model with field tests and to validate the proposed assumptions to model the spatial variability in tillage forces.  相似文献   

8.
In response to the divergent understanding of double inlet cyclone performance in the literature, the effect of inlet volute wrap angle on the performance and flow field of double inlet cyclone separator was studied by Computational Fluid Dynamic (CFD) method. The results showed that the inlet volute wrap angle can affect the comparison results of the single and double inlet gas cyclones with the same total inlet cross-sectional area and velocity. 0° and 90° volute double inlet improved the efficiency mainly by separating particles below 10 μm, while 180° volute double inlet had no separation advantage for any particles, so the symmetrical double inlet does not always improve the efficiency, and the appropriate inlet volute wrap angle should be selected according to the actual situation, otherwise, the expected performance requirements of the symmetrical double inlet cyclone cannot be achieved. Compared with the flow field, it is found that the inlet volute wrap angle changed the tangential velocity of the symmetrical double inlet cyclone separator, thus changing the performance.  相似文献   

9.
Atmospheric pressure waves are a notable phenomenon associated with explosive volcanic eruptions. They can provide us with information about eruption processes that are useful both scientifically and practically. In this paper, we give a brief review of studies that have been carried out on this phenomenon in the field of volcanology. Then, we introduce a prototype tool called ‘MOVE’ (Mobile Observatory for Volcanic Explosions). It is a remote-controlled vehicle carrying various instruments to observe pressure waves and the eruption processes. PACS 91.40.Dr · 91.40.Ft · 93.65.+e · 93.85.+qThis paper was based on work presented at the 2nd International Symposium on Interdisciplinary Shock Wave Research, Sendai, Japan on March 1–3, 2005.  相似文献   

10.
Direct contact condensation (DCC) of steam jet in subcooled water flow in a channel was experimentally studied. The main inlet parameters, including steam mass flux, water mass flux and water temperature were tested in the ranges of 200–600 kg/(m2 s), 7–18 × 103 kg/(m2 s), 288–333 K, respectively. Two unstable flow patterns and two stable flow patterns were observed via visualization window by a high speed camera. The flow patterns were determined by steam mass flux, water mass flux and water temperature, and the relationship between flow patterns and flow field parameters was discussed. The results indicated that whether pressure or temperature distributions on the bottom wall of channel could represent different flow patterns. And the position of pressure peak on the bottom wall could almost represent the condensation length. The upper wall pressure distributions were mainly dependent on steam and water mass flux; and the upper wall temperature distributions were affected by the three main inlet parameters. Moreover, the bottom wall pressure and temperature distributions of different unstable flow patterns had similar characteristics while those of stable flow patterns were affected by shock and expansion waves. The underlying cause of transition between different flow patterns under different inlet parameters was reflected and discussed based on pressure distributions.  相似文献   

11.
A review is given of the use of mean maximum pressure (MMP) in specifying off-road performance of vehicles. The need to quote a single mobility criterion which is unbiased in favour of either wheeled or tracked vehicles is recognised. The difficulties which researchers have encountered in developing expressions for MMP for both wheeled and tracked vehicles which correctly describe their relative performance are highlighted. Predictions of MMP for wheeled vehicles are compared with ground pressure measurements for a number of vehicles and it is shown that the MMP parameter does not actually represent the ground pressure accurately. Finally it is argued that the only safe route for the specifier is to quote a range of soil types, conditions and gradients on which the vehicle is to operate. This shifts the responsibility to the designer but also clears the way for innovative design, beyond the constraints of the MMP formulae.  相似文献   

12.

通过Ø30 mm杀爆燃弹外场炮击实验,模拟车辆、装备油箱被炮火击中后二次爆炸场景,采用高速照相机、红外热成像仪分别记录引爆柴油过程和爆炸火球的温度场,对比评估普通柴油、含水型柴油和抑爆型柴油的爆炸特性。实验结果显示:炮弹射击油箱瞬间,柴油液滴被抛撒出油箱,与空气快速混合形成气溶胶,并在炸药能量作用下引发爆炸,形成爆炸火球;不同类型柴油的爆炸火球均经历3个发展阶段,但其尺寸、扩展速率和表面温度等有较大差别,普通柴油和含水型柴油的火球这3个参数比较接近,都大于抑爆型柴油;含水型柴油的油箱毁伤容积为108.00 dm3,远高于普通柴油的57.65 dm3和抑爆型柴油的38.15 dm3。研究表明,抑爆柴油中的高分子聚合物能起到较好的抑爆作用。

  相似文献   

13.
In this paper, we propose a measurement technique based on local strain measurements to perform real-time reconstruction of the overall structural deformation and the distributed stress field produced by the impact of a body on a water free surface. In particular, we seek establishing a measurement chain capable of acquiring and elaborating the signals at high frequency, so that it can be utilized to study rapidly varying strain fields, such as those occurring in impulsive events. Fiber Bragg gratings are utilized to sense the local structural deformation. Experiments are conducted on flexible plastic wedges with variable deadrise angles impacting on a quiescent fluid surface. The experimental tests are performed in free fall and we explore variations of the entry velocity by varying the drop height. The structural deformation is reconstructed from point-wise strain measurements utilizing a modal reconstruction methodology. The impact dynamics are analysed through accelerometers and linear position sensors. Results show that the impact behaviour of the flexible body is characterized by a main overall deformation where the structure is distorted in the direction of the loading, whereby marked vibrations, whose amplitude increase with the entry velocity, dominate the dynamic response. The influence of the mode shapes considered in the present analysis on the accuracy of the results is also observed. The proposed methodology allows for a fairly high acquisition frequency, which translates into a real-time structural reconstruction technique. Results show that the proposed methodology can be a valuable tool for the live monitoring of structures undergoing impact events.  相似文献   

14.
This paper investigates the application of the centre implicit method for the determination of the pressure transient in a pipeline, and compares the results with those obtained using the method of characteristics and an experimental investigation. The study shows that there are unique values for the stability criterion (ratio of the linear and time increments) and the artificial viscosity term (a damping factor) used in the numerical computation. The time step and the number of nodes required for the accuracy of the method have been considered. The centre implicit method can be readily adapted to transient flow with variable wave speed provided the established conditions are used.  相似文献   

15.
Pressure pulsations excited by a centrifugal turbomachinery such as compressor, fan or pump at the blade passing frequency may cause severe noise and vibrations in piping system. Therefore, the practical evaluation method of pressure pulsations is strongly recommended. In particular, the maximum pressure amplitude under the resonant conditions should be appropriately evaluated. In this study, a one-dimensional excitation source model for a compressor or pump is introduced based on the equation of motion, so as to incorporate the non-linear damping proportional to velocity squared in the total piping system including the compressor or pump. The damping characteristics of the compressor or pump are investigated by using the semi-empirical model. It is shown that the resistance coefficient of the compressor or pump depends on the Reynolds number that is defined using the equivalent velocity of the pulsating flow. The frequency response of the pressure amplitude and the pressure distribution in the piping system can be evaluated by introducing the equivalent resistance of the compressor or pump and that of piping system. In particular, the relation of the maximum pressure amplitude in piping system to the location of the excitation source under resonant conditions can be evaluated. Finally, the reduction of the pressure pulsations by use of an orifice plate is discussed in terms of the pulsation energy loss.  相似文献   

16.
Results from numerical simulations and guidance from an approximated corrected-theory, developed by Oliveira and Pinho (1997), (Oliveira, P.J. and Pinho, F.T. 1997. Pressure drop coefficient of laminar Newtonian flow in axisymmetric sudden expansions. Int. J. Heat and Fluid flow 18, 518–529) have been used to arrive at a correlation expressing the irreversible loss coefficient for laminar Newtonian flow in axisymmetric sudden expansions. The correlation is valid for the ranges 1.5 < D2/D1 < 4 and 0.5 < Re < 200 with errors of less than 5%, except for 25 < Re < 100 where the error could be as much as 7%. The recirculation bubble length is also presented for the same range of conditions and the pressure recovery coefficient was calculated for Reynolds numbers above 15.  相似文献   

17.
Summary In this paper, the global behavior of relative equilibrium states of a three-body satellite with flexible connection under the action of the gravitational torque is studied. With geometric method, the conditions of existence of nontrivial solutions to the relative equilibrium equations are determined. By using reduction method and singularity theory, the conditions of occurrence of bifurcation from trivial solutions are derived, which agree with the existence conditions of nontrivial solutions, and the bifurcation is proved to be pitchfork-bifurcation. The Liapunov stability of each equilibrium state is considered, and a stability diagram in terms of system parameters is presented. Received 10 March 1998; accepted for publication 21 July 1998  相似文献   

18.
Based on previous work, a new temperature measuring system for gas–liquid flow, composed of shielded and unshielded thermocouples, on-line laser detection device for liquid droplets, vacuum pump and wavelet analysis data processor, is developed in this work. The necessity of vacuum pump and the criterion of mesh size selection are also described. Through an application of measuring temperature in saturator, it shows that the system can evaluate the separation of gas–liquid two-phase flow and measure the liquid droplet temperature and the gas temperature effectively in counter-current spraying field.  相似文献   

19.

The lacunar-canalicular system (LCS) is acknowledged to directly participate in bone tissue remodeling. The fluid flow in the LCS is synergic driven by the pressure gradient and electric field loads due to the electro-mechanical properties of bone. In this paper, an idealized annulus Maxwell fluid flow model in bone canaliculus is established, and the analytical solutions of the fluid velocity, the fluid shear stress, and the fluid flow rate are obtained. The results of the fluid flow under pressure gradient driven (PGD), electric field driven (EFD), and pressure-electricity synergic driven (P-ESD) patterns are compared and discussed. The effects of the diameter of canaliculi and osteocyte processes are evaluated. The results show that the P-ESD pattern can combine the regulatory advantages of single PGD and EFD patterns, and the osteocyte process surface can feel a relatively uniform shear stress distribution. As the bone canalicular inner radius increases, the produced shear stress under the PGD or P-ESD pattern increases slightly but changes little under the EFD pattern. The increase in the viscosity makes the flow slow down but does not affect the fluid shear stress (FSS) on the canalicular inner wall and osteocyte process surface. The increase in the high-valent ions does not affect the flow velocity and the flow rate, but the FSS on the canalicular inner wall and osteocyte process surface increases linearly. In this study, the results show that the shear stress sensed by the osteocyte process under the P-ESD pattern can be regulated by changing the pressure gradient and the intensity of electric field, as well as the parameters of the annulus fluid and the canaliculus size, which is helpful for the osteocyte mechanical responses. The established model provides a basis for the study of the mechanisms of electro-mechanical signals stimulating bone tissue (cells) growth.

  相似文献   

20.
The acousto-ultrasonic (AU) technique can be a useful methodology for monitoring structures or mechanical components during endurance tests, fatigue tests or, in general, during the life of the components. To obtain reliable information about the failure and fatigue cracks at their earliest initiation stages and to follow their evolution regardless of any disturbance effects, refined experimental procedures and signal processing are needed. In particular, the effects of temperature variation cannot be entirely suppressed and are difficult to evaluate. This means that the results of the AU technique are not immediately interpretable and usable for monitoring structures. This paper describes some procedures aimed at minimizing the effects of disturbance on AU signals caused by temperature variation, allowing use of AU for monitoring over extensive periods of time or when the component is subjected to heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号