首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A periodically inhomogeneous Schrödinger equation is considered. The inhomogeneity is reflected through a non-uniform coefficient of the linear and nonlinear term in the equation. Due to the periodic inhomogeneity of the linear term, the system may admit spectral bands. When the oscillation frequency of a localized solution resides in one of the finite band gaps, the solution is a gap soliton, characterized by the presence of infinitely many zeros in the spatial profile of the soliton. Recently, how to construct such gap solitons through a composite phase portrait is shown. By exploiting the phase-space method and combining it with the application of a topological argument, it is shown that the instability of a gap soliton can be described by the phase portrait of the solution. Surface gap solitons at the interface between a periodic inhomogeneous and a homogeneous medium are also discussed. Numerical calculations are presented accompanying the analytical results.  相似文献   

2.
We compute and study localized nonlinear modes (solitons) in the semi-infinite gap of the focusing two-dimensional nonlinear Schrödinger (NLS) equation with various irregular lattice-type potentials. The potentials are characterized by large variations from periodicity, such as vacancy defects, edge dislocations, and a quasicrystal structure. We use a spectral fixed-point computational scheme to obtain the solitons. The eigenvalue dependence of the soliton power indicates parameter regions of self-focusing instability; we compare these results with direct numerical simulations of the NLS equation. We show that in the general case, solitons on local lattice maximums collapse. Furthermore, we show that the Nth-order quasicrystal solitons approach Bessel solitons in the large-N limit.  相似文献   

3.
Properties of spatial solitons in channel waveguide and optical lattice are studied with the help of projection operator approach. The nonlinearity is assumed to be of cubic-quintic type. The stability consideration of the fixed point solutions of the ODE’s governing the evolution of soliton parameters indicates to the existence of more than one branch of soliton, giving rise to multistability. Explicit numerical analysis gives more information than the standard Vakhitov–Kolokov criterion. A systematic numerical simulation of the soliton profile gives detailed information about the nature of trapping and structure of the different branches of the pulse. It is observed that even under different launching conditions the solitons do not radiate but get trapped.  相似文献   

4.
N‐dark–dark solitons in the integrable coupled NLS equations are derived by the KP‐hierarchy reduction method. These solitons exist when nonlinearities are all defocusing, or both focusing and defocusing nonlinearities are mixed. When these solitons collide with each other, energies in both components of the solitons completely transmit through. This behavior contrasts collisions of bright–bright solitons in similar systems, where polarization rotation and soliton reflection can take place. It is also shown that in the mixed‐nonlinearity case, two dark–dark solitons can form a stationary bound state.  相似文献   

5.
6.
7.
8.
Many real nonlinear evolution equations exhibiting soliton properties display a special superposition principle, where an infinite array of equally spaced, identical solitons constitutes an exact periodic solution. This arrangement is studied for the modified Korteweg–de Vries equation with positive cubic nonlinearity, which possesses algebraic solitons with nonvanishing far field conditions. An infinite sum of equally spaced, identical algebraic pulses is evaluated in closed form, and leads to a complex valued solution of the nonlinear evolution equation.  相似文献   

9.
Soliton solutions of a class of generalized nonlinear evolution equations are discussed ana-lytically and numerically. This is done by using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical solutions and the interactions betweenthe solitons for the generalized nonlinear Sehrodinger equations. the characteristic behavior of thenonlinearity admintted in the system has been investigated and the soliton states of the system in thelimit when a→Oand a→∞ have been studled. The results presented show that the soliton phe-rtomenon is charaeteristics associated with the nonlinearities of the dynamical systems.  相似文献   

10.
Propagation of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions is analyzed. The Kadomtsev–Petviashivili (KP) equation is derived by using the reductive perturbation theory. A Sagdeev potential for this system has been proposed. This potential is used to study the stability conditions and existence of solitonic solutions. Also, it is shown that a rarefactive soliton can be propagates in most of the cases. The soliton energy has been calculated and a linear dispersion relation has been obtained using the standard normal-modes analysis. The effects of variable dust charge on the amplitude, width and energy of the soliton and its effects on the angular frequency of linear wave are discussed too. It is shown that the amplitude of solitary waves of KP equation diverges at critical values of plasma parameters. Solitonic solutions of modified KP equation with finite amplitude in this situation are derived.  相似文献   

11.
Schrödinger Operators on Zigzag Nanotubes   总被引:1,自引:0,他引:1  
We consider the Schr?dinger operator with a periodic potential on quasi-1D models of zigzag single-wall carbon nanotubes. The spectrum of this operator consists of an absolutely continuous part (intervals separated by gaps) plus an infinite number of eigenvalues with infinite multiplicity. We describe all compactly supported eigenfunctions with the same eigenvalue. We define a Lyapunov function, which is analytic on some Riemann surface. On each sheet, the Lyapunov function has the same properties as in the scalar case, but it has branch points, which we call resonances. We prove that all resonances are real. We determine the asymptotics of the periodic and antiperiodic spectrum and of the resonances at high energy. We show that there exist two types of gaps: i) stable gaps, where the endpoints are periodic and anti-periodic eigenvalues, ii) unstable (resonance) gaps, where the endpoints are resonances (i.e., real branch points of the Lyapunov function). We describe all finite gap potentials. We show that the mapping: potential all eigenvalues is a real analytic isomorphism for some class of potentials. Submitted: October 5, 2006. Accepted: December 15, 2006.  相似文献   

12.
The periodic wave solutions for Kadomtsev–Petviashvili (KP) like equation coupled to a Schrödinger equation are obtained by using of Jacobi elliptic function method, in the limit cases, the multiple soliton solutions are also obtained. The properties of some periodic and soliton solution for this system are shown by some figures.  相似文献   

13.
This paper studies optical solitons in a power-law media with time-dependent coefficients of dispersion, nonlinearity and attenuation. The 1-soliton solution is obtained for the nonlinear Schrödinger’s equation with power-law nonlinearity. In addition, a relation between these coefficients is obtained for the solitons to exist. Finally, the velocity of the soliton is also obtained in terms of these coefficients.  相似文献   

14.
Kadomtsev–Petviashvili (KP)-type equations are seen in fluid mechanics, plasma physics, and gas dynamics. Hereby we consider an integrable KP-based system. With the Hirota method, symbolic computation and truncated Painlevé expansion, we obtain bright one- and two-soliton solutions. Figures are plotted to help us understand the dynamics of regular and resonant interactions, and we find that the regular interaction of solitons is completely elastic. Based on the asymptotic and graphical behavior of the two-soliton solutions, we analyze two kinds of resonance between the solitons, both of which are non-completely elastic. A triple structure, a periodic resonant structure in the procedure of interactions and a high wave hump in the vicinity of the crossing point, can be observed. Through the linear stability analysis, instability condition for the soliton solutions can be given, which might be useful, e.g., for the ship traffic on the surface of water.  相似文献   

15.
Soliton solutions of a class of generalized nonlinear evolution equations are discussed analytically and numerically, which is achieved using a travelling wave method to formulate one-soliton solution and the finite difference method to the numerical solutions and the interactions between the solitons for the generalized nonlinear Schrödinger equations. The characteristic behavior of the nonlinearity admitted in the system has been investigated and the soliton state of the system in the limit ofα → 0 andα → ∞ has been studied. The results presented show that soliton phenomena are characteristics associated with the nonlinearities of the dynamical systems.  相似文献   

16.
17.
In this paper we study dynamics of solitons in the generalized nonlinear Schrödinger equation (NLS) with an external potential in all dimensions except for 2. For a certain class of nonlinearities such an equation has solutions which are periodic in time and exponentially decaying in space, centered near different critical points of the potential. We call those solutions which are centered near the minima of the potential and which minimize energy restricted to L2-unit sphere, trapped solitons or just solitons. In this paper we prove, under certain conditions on the potentials and initial conditions, that trapped solitons are asymptotically stable. Moreover, if an initial condition is close to a trapped soliton then the solution looks like a moving soliton relaxing to its equilibrium position. The dynamical law of motion of the soliton (i.e. effective equations of motion for the soliton's center and momentum) is close to Newton's equation but with a dissipative term due to radiation of the energy to infinity.  相似文献   

18.
We address the existence of moving gap solitons (traveling localized solutions) in the Gross–Pitaevskii equation with a small periodic potential. Moving gap solitons are approximated by the explicit solutions of the coupled‐mode system. We show, however, that exponentially decaying traveling solutions of the Gross–Pitaevskii equation do not generally exist in the presence of a periodic potential due to bounded oscillatory tails ahead and behind the moving solitary waves. The oscillatory tails are not accounted in the coupled‐mode formalism and are estimated by using techniques of spatial dynamics and local center‐stable manifold reductions. Existence of bounded traveling solutions of the Gross–Pitaevskii equation with a single bump surrounded by oscillatory tails on a large interval of the spatial scale is proven by using these techniques. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Problems of nonlinear dynamics and soliton propagation in the presence of rapidly varying periodic perturbations are considered applying a rigorous analytical approach based on asymptotic expansions. The method we develop allows derivation of an effective nonlinear equation for the slowly varying field component in any order of the asymptotic procedure as expansions in the parameter ω−1, ω being the frequency of the rapidly varying (direct or parametric) driving force. The general approach is demonstrated on several examples of different physical nature, including chaos suppression in the parametrically driven Duffing oscillator, dynamics of the sine-Gordon kinks in the presence of rapidly varying direct or parametric driving force, propagation of envelope (nonlinear Schrödinger) solitons in optical fibres with periodic amplification, stability of solitons on rapidly varying spatial periodic potential, and so on.  相似文献   

20.
This paper studies the solution of the Kadomtsev–Petviasvili equation with power law nonlinearity in 1+3 dimensions. The Lie symmetry approach as well as the extended tanh‐function and G′/G methods are used to carry out the analysis. Subsequently, the soliton solution is obtained for this equation with power law nonlinearity. Both topological as well as non‐topological solitons are obtained for this equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号