首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The dynamical processes of Ne atom injected into single-wall carbon nanotube (SWCNT) are modeled with molecular dynamics simulations. The threshold energies to encapsulate rare-gas atoms in SWCNT are presented. The range of tube radius for stable oscillation is revealed, which is independent of the type of carbon nanotubes. And the oscillatory frequency is sensitive to the change in the diameter, the length and chirality of the tube.  相似文献   

3.
We present a real-time investigation of ultra-fast carrier dynamics in single-wall carbon nanotube bundles using femtosecond time-resolved photoelectron spectroscopy. The experiments allow us to study the processes governing the sub-picosecond and the picosecond dynamics of non-equilibrium charge carriers. On the sub-picosecond time scale the dynamics are dominated by ultra-fast electron–electron scattering processes, which lead to internal thermalization of the laser-excited electron gas. We find that quasiparticle lifetimes decrease strongly as a function of their energy up to 2.38 eV above the Fermi level – the highest energy studied experimentally. The subsequent cooling of the laser-heated electron gas to the lattice temperature by electron–phonon interaction occurs on the picosecond time scale and allows us to determine the electron–phonon mass-enhancement parameter λ. The latter is found to be over an order of magnitude smaller if compared, for example, with that of a good conductor such as copper. Received: 4 March 2002 / Accepted: 7 March 2002 / Published online: 3 June 2002  相似文献   

4.
Single-walled nanocarbons (SWNT) are common nanovehicles of interest for making biosensors more sensitive. Carbon nanotubes (CNTs) have many distinct properties, causing them to be exploited in the development of the next generation of such nanosensors. The keto–enol tautomerization is one of the most common investigated subjects of isomerism in this regard; sensors are devices that are able to detect and change the physical properties of such reactions. Some chemicals with the properties to do keto–enol tautomerization are substituted to CNTs, and the physicochemical properties are simulated. HyperChem is used as the main software to design the CNT sensor, and the main physical properties are calculated after Monte Carlo simulation. In all situations, the energy minimization has been done by MM+, and the fully optimized systems have transferred to Guassian98. After final optimization with 3–21 G, Hartree–Fock (HF) method, SWNT have been linked up to caffeic acid and chlorogenic acid. Then, frequency and intensity were investigated using AM1 and PM3 codes. Also, we determined some nuclear magnetic resonance parameters in the HF method and several basis sets.  相似文献   

5.
李论雄  苏江滨  吴燕  朱贤方  王占国 《物理学报》2012,61(3):36401-036401
利用透射电镜在室温下对不同形态的单壁碳纳米管进行了原位电子束辐照研究.研究发现:在相同的辐照条件下随着辐照时间(或辐照剂量)的增加,两端固定的单壁碳纳米管径向收缩,且收缩速率越来越快;相同直径的轴向弯曲的单壁碳纳米管比平直的单壁碳纳米管更加不稳定;一端固定另端自由的单壁碳纳米管轴向收缩,但其直径基本不变.利用单壁碳纳米管纳米曲率效应和能量束诱导非热激活效应,对上述单壁碳纳米管不稳定性现象进行了新的、合理的解释.  相似文献   

6.
Exact diagonalization results are reported for the bright and dark exciton structure of semiconducting single-wall carbon nanotubes in the framework of the Hubbard model combined with a small crystal approach for several values of the correlation coupling strength U/t. Our findings, in the low-intermediate correlation regime (1.5 < U/t < 2.1), show the presence of dark states above and below the first bright exciton |B> and can account for reported experimental values of deep triplet states below |B> and of a K-momentum singlet dark exciton above this state. In order to fit the temporal profile of the photoluminescence (PL) decay, a bottleneck mechanism is considered involving a few dark states, with the respective energy gaps correspondingly obtained in the above-mentioned correlation range. We find that a kinetic model with one dark state above and two below |B> is able to recover the observed biexponential features of the PL behaviour with a reasonable set of parameters. Within this model we attribute the long tail of the PL to a delayed luminescence process of the bright state caused by the nearby calculated dark states.  相似文献   

7.
We present a theoretical analysis and first-principles calculation of the radiative lifetime of excitons in semiconducting carbon nanotubes. An intrinsic lifetime of the order of 10 ps is computed for the lowest optically active bright excitons. The intrinsic lifetime is, however, a rapid increasing function of the exciton momentum. Moreover, the electronic structure of the nanotubes dictates the existence of dark excitons near in energy to each bright exciton. Both effects strongly influence measured lifetime. Assuming a thermal occupation of bright and dark exciton bands, we find an effective lifetime of the order of 10 ns at room temperature, in good accord with recent experiments.  相似文献   

8.
The nucleation and rapid growth of single-wall carbon nanotubes (SWNTs) were explored by pulsed-laser assisted chemical vapor deposition (PLA-CVD). A special high-power, Nd:YAG laser system with tunable pulse width (>0.5 ms) was implemented to rapidly heat (>3×104°C/s) metal catalyst-covered substrates to different growth temperatures for very brief (sub-second) and controlled time periods as measured by in situ optical pyrometry. Utilizing growth directly on transmission electron microscopy grids, exclusively SWNTs were found to grow under rapid heating conditions, with a minimum nucleation time of >0.1 s. By measuring the length of nanotubes grown by single laser pulses, extremely fast growth rates (up to 100 microns/s) were found to result from the rapid heating and cooling induced by the laser treatment. Subsequent laser pulses were found not to incrementally continue the growth of these nanotubes, but instead activate previously inactive catalyst nanoparticles to grow new nanotubes. Localized growth of nanotubes with variable density was demonstrated through this process and was applied for the reliable direct-write synthesis of SWNTs onto pre-patterned, catalyst-covered metal electrodes for the synthesis of SWNT field-effect transistors.  相似文献   

9.
The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler–Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.  相似文献   

10.
Combining time-dependent density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the dynamics of excited carriers in a (3,3) carbon nanotube at different temperatures. Following an hnu=6.8 eV photoexcitation, the carrier decay is initially dominated by efficient coupling to electronic degrees of freedom. At room temperature, the excitation gap is reduced to nearly half its initial value after approximately 230 fs, where coupling to ionic motion starts dominating the decay. We show that the onset point and damping rate in the phonon regime change with initial ion velocities, a manifestation of temperature-dependent coupling between electronic and ionic degrees of freedom.  相似文献   

11.
Polarized Raman spectra were obtained from a rope of aligned semiconducting single-wall nanotubes (SWNTs) in the vicinity of the D band and the G band. Based on group theory analysis and related theoretical predictions, the G-band profile was deconvolved into four intrinsic SWNT components with the following symmetry assignments: 1549 cm(-1) [E2(E(2g))], 1567 cm(-1) [A(A(1g))+E1(E(1g))], 1590 cm(-1) [A(A(1g))+E1(E(1g))] and 1607 cm(-1) [E2(E(2g))]. The frequency shifts of the tangential G modes from the 2D graphitelike E(2g(2)) frequency are discussed in terms of the nanotube geometry.  相似文献   

12.
The behaviour of methane molecules inside carbon nanotubes at room temperature is studied using classical molecular dynamics simulations. A methane molecule is represented either by a shapeless super-atom or by a rigid set of five interaction centres localized on atoms. Different loadings of methane molecules ranging from the dense gas density to the liquid density, and the influence of flexibility of the CNT on structural and dynamic properties of confined molecules are considered. The simulation results show the decreases of the diffusion coefficient of methane molecules with density. At higher densities diffusion coefficient values are almost independent of molecular shape, but at low densities one observes faster motion of the super-atom molecule than that for the tetrahedral model of the molecule. For loadings of methane considered here the nanotube flexibility, introduced by the reactive empirical bond order (REBO) potential for interactions between carbon atoms of nanotube, does not have an effect on diffusivity of methane molecules, and its impact on the molecular structure is weak. It is found that methane molecules in the vicinity of the nanotube wall show tripod orientation with respect to the nanotube surface.  相似文献   

13.
14.
The dependence of current-voltage characteristics of single-wall nanotubes on their radius and chirality is studied theoretically. It is shown that the conductance of a single-wall nanotube at low voltages can assume discrete values equal to zero for a dielectric tube and 4(e2/h) for a conducting tube (e is the electron charge, h is the Planck constant). The current-voltage characteristic of a nanotube exhibits kinks related to the discreteness of the electron spectrum. The behavior of the conductance of the nanotube at zero temperature is analyzed in a quantizing longitudinal magnetic field that changes the type of tube conduction. In a magnetic field, the conductance of a dielectric tube at low voltages can assume a value of 2(e2/h) in the region where the tube becomes conducting. In a weak magnetic field, a conducting tube becomes dielectric with an energy gap depending on the magnitude of the magnetic field. The conductance of a carbon nanotube is calculated as a function of the temperature and longitudinal magnetic field.  相似文献   

15.
小碳团簇结构的从头算分子动力学模拟   总被引:5,自引:0,他引:5  
引入第一原理密度泛函理论, 即赝势密度泛函在实空间的有限差分方法和朗之万分子动力学退火技术, 对碳团簇Cn(n=2-8)的基态结构进行了理论计算, 所得结果与其他作者的计算结果及实验数据吻合较好.  相似文献   

16.
谢芳  朱亚波  张兆慧  张林 《物理学报》2008,57(9):5833-5837
运用分子动力学模拟方法,模拟了三种碳纳米管振荡器内管的振荡运动.结果显示:振荡器的内管越短,振荡的频率越大,且受到的轴向回复力的波动也越大.内管在沿着管轴振荡的同时,还绕着管轴旋转,转动的动能有明显涨落并与内管管长密切相关.该研究对于开发碳纳米管的相关应用技术有指导意义. 关键词: 分子动力学模拟 多壁碳纳米管 振荡  相似文献   

17.
We combine molecular dynamics simulations and density functional theory to analyze the electrical structure and transmission probability in four different DNA sequences under physiological conditions. The conductance in these sequences is primarily controlled by interstrand and intrastrand coupling between low-energy guanine orbitals. Insertion of adenine-thymine base pairs between the guanine-cytosine rich domains acts as a tunneling barrier. Our theory explains recent length dependent conductance data for individual DNA molecules in water.  相似文献   

18.
Conversion of two diametrically opposed atomic rows on a carbon nanotube to sp(3) hybridization produces two identical weakly coupled one-dimensional electronic systems within a single robust covalently bonded package: a biribbon. Arm-chair tubes, when so divided, acquire a pair of narrow spin-polarized bands at the Fermi energy; interaction across the sp(3) dividers produces a tunable band splitting in the THz range. For semiconducting tubes, the eigenvalues of the low-energy electronic states are surprisingly unaffected by the bifurcation; however, the tubes' response functions to external electric fields are dramatically altered. These modified tubes could be produced by uniaxial compression transverse to the tube axis followed by site-selective chemisorption.  相似文献   

19.
The mechanism of H migration in amorphous Si has remained an unresolved problem. The main issue is the small activation energy (1.5 eV) relative to the known strength of Si-H bonds (2-3.5 eV). We report first-principles finite-temperature simulations which demonstrate vividly that H is not released spontaneously, as proposed by most models, but awaits the arrival of a floating bond (FB). The "migrating species" is an FB-H complex, with H jumping from Si to Si and the FB literally floating around it. Migration stops when the FB veers away.  相似文献   

20.
碳纳米管管腔作为分子物质的纳米通道,其储存或输送水的能力具有重要研究价值.为了研究碳纳米管管腔受限空间对水分子团簇结构和分布的影响,本文采用分子动力学方法探究了管径、手性和温度对单壁碳纳米管管腔内水的结构和分布的影响.结果表明:在常温下,管径尺寸范围为1.018—1.253 nm的单壁碳纳米管管内易形成有序的多元环水结构,此范围以外碳纳米管管内难以形成水的有序结构;且随着管径尺寸增大,多元环水呈现由三元环至六元环的结构变化;范德瓦耳斯势分布分析表明,在上述管径范围内,水分子趋向于贴近碳纳米管管壁分布而形成水的有序结构.对比管径尺寸差别较小的碳纳米管,其手性对多元环水结构影响不大.多元环水结构的稳定性表现出温度依赖性,管径较大的碳纳米管内的多元环水的有序结构更易随温度升高而消失.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号