首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The current-induced magnetic switching is studied in Co/Cu/Co nanopillar with an in-plane magnetization traversed under the perpendicular-to-plane external field.Magnetization switching is found to take place when the current density exceeds a threshold.By analyzing precessional trajectories,evolutions of domain walls and magnetization switching times under the perpendicular magnetic field,there are two different magnetization switching modes:nucleation and domain wall motion reversal;uniform magnetization ...  相似文献   

2.
A multilayer Pt/Co/Ir/Co/Pt/GaAs heterostructures demonstrates a long term (to several hours) magnetic relaxation between two stable states of the magnetization of the system. The magnetization reversal of the heterostructure layers occurs both due to the formation of nuclei of the reverse magnetization domains and as a result of their further growth by means of motion of domain walls. The competition between two these processes provides a nonexponential character of the magnetic relaxation. At 300 K, the contributions of these processes to the relaxation are commensurable, while, at temperatures lower than 200 K, the contribution of the nucleation is suppressed and the magnetic relaxation occurs as a result of motion of the domain walls.  相似文献   

3.
Conditions at which magnetic inhomogeneities like 0° domain walls arise in (111) plates with combined anisotropy and the properties of these inhomogeneities are studied. In local magnetic fields, the inhomogeneities may behave as stable states. Their role in magnetization reversal of the crystals is demonstrated.  相似文献   

4.
The magnetization and magnetization reversal processes that occur through the mechanism of incoherent rotation of magnetic moments in cubic ferromagnets with limited sizes are investigated theoretically. It is established that the appropriate model representation of magnetic inhomogeneities arising in the region of defects is provided by 0° domain walls. The influence of the external magnetic field on the structure and the stability region of the 0° domain walls is determined. This makes it possible to reveal the characteristic features of the magnetization reversal of real crystals as a function of the material and defect parameters, in particular, in the vicinity of the spin-reorientation phase transition.  相似文献   

5.
The magnetization dynamics is studied theoretically in the tilted-polarizer magnetic trilayers. Utilizing stability analysis, we obtain the phase diagrams in the plane defined by the current density and the direction of pinned-layer magnetization. With the pinned-layer magnetization oriented in a certain range, one can realize different magnetic states, such as quasi-parallel and quasi-antiparallel stable states, in-plane and out-of-plane precessions, and out-of-plane stable states by varying the current. We find that the free-layer magnetization prefers reversal for small deviation of the fixed-layer magnetization from the film plane, while precession for big deviation.  相似文献   

6.
王日兴  叶华  王丽娟  敖章洪 《物理学报》2017,66(12):127201-127201
在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.  相似文献   

7.
The distribution of axes of easy magnetization close to a homogeneous distribution is revealed in each half-thickness of a ribbon after annealing it in a helical magnetic field. The transition from magnetic reversal of a ribbon by the displacement of two domain walls formed near a middle plane of a ribbon to magnetic reversal of a ribbon by displacement of two domain walls formed near to the main surfaces of a ribbon is found out during each half-period of a magnetic reversal.  相似文献   

8.
We have investigated the evolution of the magnetization reversal mechanism in asymmetric Ni nanowires as a function of their geometry. Circular nanowires are found to reverse their magnetization by the propagation of a vortex domain wall, while in very asymmetric nanowires the reversal is driven by the propagation of a transverse domain wall. The effect of shape asymmetry of the wire on coercivity and remanence is also studied. Angular dependence of the remanence and coercivity is also addressed. Tailoring the magnetization reversal mechanism in asymmetric nanowires can be useful for magnetic logic and race-track memory, both of which are based on the displacement of magnetic domain walls. Finally, an alternative method to detect the presence of magnetic drops is proposed.  相似文献   

9.
矩形磁性纳米点动力学反磁化过程的微磁学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微磁学模拟方法研究了初始态为C形磁结构的矩形CoFe纳米点在方波脉冲场作用下的动力学反磁化过程.研究发现,随着脉冲场强的增强,磁体的反磁化模式发生了改变.当场强较弱时反磁化过程通过畴壁移动-单涡旋的形成和移动来完成;当场强较大时反磁化过程模式转变为畴壁移动-双涡旋的形成与移动;在更强的场强下反磁化过程通过畴壁的移动-多涡旋的形成与湮没来实现.由于反磁化模式随场强的变化而改变,反磁化时间随场强的增大出现振荡变化现象. 关键词: 动力学反磁化过程 反磁化时间 微磁学模拟  相似文献   

10.
Artificial spin ice has been recently implemented in two-dimensional arrays of mesoscopic magnetic wires. We propose a theoretical model of magnetization dynamics in artificial spin ice under the action of an applied magnetic field. Magnetization reversal is mediated by domain walls carrying two units of magnetic charge. They are emitted by lattice junctions when the local field exceeds a critical value Hc required to pull apart magnetic charges of opposite sign. Positive feedback from Coulomb interactions between magnetic charges induces avalanches in magnetization reversal.  相似文献   

11.
Ferroelectric transition has been detected in a ferrimagnetic spinel oxide of CoCr2O4 upon the transition to the conical spin order below 25 K. The direction [110] of the spontaneous polarization is normal to both the magnetization easy axis [001] and to the propagation axis [110] of the transverse spiral component, in accord with the prediction based on the spin-current model. The reversal of the spontaneous magnetization by a small magnetic field (approximately 0.1 T) induces the reversal of the spontaneous polarization, indicating the clamping of the ferromagnetic and ferroelectric domain walls.  相似文献   

12.
The change in the magnetic domain structure due to the proximity of a superconductor has been experimentally investigated for the first time. The complex character of magnetization reversal at temperatures below critical, caused by the mutual long-range effect of a superconductor and a magnet, has been shown. In particular, it is found that even magnetization reversal of the heterostructure by an in-plane field leads to the formation of Abrikosov vortices in the superconductor, carrying a flux perpendicularly to the film plane. It is shown that this is a consequence of the transformation of narrow domain walls into wide stripes due to the interaction with scattering fields from the superconductor. In turn, after penetration of the magnetic flux into the superconductor at some depth, the scattering fields cause backward magnetization reversal of the external film edge, as a result of which vortices with oppositely directed fluxes enter the crystal and propagate in the superconductor bulk in the form of chains along twins, as in the case of magnetization by a perpendicular magnetic field. Thus, at longitudinal magnetization, the flux enters the superconducting film in the form of wide stripes with alternating perpendicular induction, which is explained by the long-range interaction of the scattering fields of the superconductor with the manganite magnetization.  相似文献   

13.
Antidots of size 0.5 μm are prepared by patterning iron-nickel films with a focused ion beam. The magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magnetization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propagates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts with magnetization rotation outside the patterned region at the antidot edges and propagates as the domain walls execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can carry information bits. Results obtained are explained in terms of competition between the demagnetizing energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-density storage elements is discussed.  相似文献   

14.
The kinetics of magnetization reversal of a thin LSMO film has been studied for the first time. It is shown that the magnetic domain structure critically depends on the conditions of structure formation. In the demagnetized state (after zero-field cooling from T c ), a maze-like domain microstructure with perpendicular magnetization is formed in the film. However, after field cooling and/or saturating magnetization by a field of arbitrary orientation, the [110] direction of spontaneous magnetization in the film plane is stabilized; this pattern corresponds to macrodomains with in-plane magnetization. Further film magnetization reversal (both quasi-static and pulsed) from this state is implemented via nucleation and motion of 180° “head-to-head” domain walls. Upon pulse magnetization reversal, the walls “jump” at a distance proportional to the applied field strength and then undergo thermally activated drift. All dynamic characterisitcs critically depend on the temperature when the latter varies around the room temperature.  相似文献   

15.
The effect of spin-polarized current on a domain structure in a magnetic junction consisting of two ferromagnetic metallic layers separated by an ultrathin nonmagnetic layer is studied within a phenomenological theory. The magnetization of one ferromagnetic layer (layer 1) is assumed to be fixed, while that of the other ferromagnetic layer (layer 2) can be freely oriented both parallel and antiparallel to the magnetization of layer 1. Layer 2 can be split into domains. Charge transfer from layer 1 to layer 2 is not attended with spin scattering by the interface but results in spin injection. Due to s-d exchange interaction, injected spins tend to orient the magnetization in the domains parallel to layer 1. This causes the domain walls to move and “favorable” domains to grow. The average magnetization current injected into layer 2 and its contribution to the s-d exchange energy are found by solving the continuity equation for carriers with spins pointing up and down. From the minimum condition for the total magnetic energy of the junction, the parameters of the periodic domain structure in layer 2 are determined as functions of current through the junction and magnetic field. It is shown that the spin-polarized current can magnetize layer 2 up to saturation even in the absence of an external magnetic field. The associated current densities are on the order of 105 A/cm2. In the presence of the field, its effect can be compensated by such a high current. Current-induced magnetization reversal in the layer is also possible.  相似文献   

16.
The magnetic properties of an isotropic, epoxy resin bonded magnets made from Pr-Fe-Co-Nb-B powder were investigated. The magnetization reversal process and magnetic parameters were examined by measurements of the initial magnetization curve, major and minor hysteresis loops and sets of recoil curves. From the initial magnetization curve and the field dependencies of the reversible and irreversible magnetization components derived from the recoil loops it was found that the magnetization reversal process is the combination of the nucleation of reversed domains and pinning of domain walls at the grain boundaries and the reversible rotation of magnetization vector in single domain grains. The interactions between grains were studied by means of δM plots. The nonlinear behavior of δM curve approve that the short range intergrain exchange coupling interactions are dominant in a field up to the sample coercivity.The interaction domains and fine magnetic structure were revealed as the evidence of exchange coupling between soft α-Fe and hard magnetic Nd2Fe14B grains.  相似文献   

17.
We present the experimental results on thermally activated magnetization reversal for [Co0.9Fe0.1(5.0 Å)/Pt(20 Å)]4 multilayer. Direct domain observations show that magnetization reversal is initiated with rare nucleation and followed by dendritic growth of domain walls. Based on macroscopic magnetic parameters from experimental data, the dendritic domain growth mode is qualitatively interpreted by Monte Carlo simulations in terms of a simple uniaxial magnetic anisotropy model. Moreover, both time evolution of domain growth observation and magnetic relaxation measurements reveal that CoFe/Pt multilayer has a relatively large activation volume compared with Co/Pt multilayers.  相似文献   

18.
We have developed a method to fabricate ferromagnetic antidot arrays on silicon nitride membrane substrates for electron or soft X-ray microscopy with antidot periods ranging from 2 μm down to 200 nm. Observations of cobalt antidot arrays with magnetic soft X-ray microscopy show that for large periods, flux closure states occur between the antidots in the as-grown state and on application of a magnetic field, domain chains are created which show a spin configuration at the chain ends comprising four 90° walls. Pinning of the domain chain ends plays an important role in the magnetization reversal, determining the length of the chains and resulting in preservation of the domain chain configuration on reducing of the applied magnetic field to zero.  相似文献   

19.
Bit patterned media (BPM) which utilize each magnetic nanostructured dot as one recorded bit has attracted much interest as a promising candidate for future high-density magnetic recording. In this study, the magnetization reversal behaviors of nanostructured L10-FePt, Co/Pt multilayer (ML), and CoPt/Ru dots are investigated. For Co/Pt and CoPt/Ru nanodots, the bi-stable state is maintained in a very wide size range up to several hundred nm, and the magnetization reversal is dominated by the nucleation of a small reversed nucleus with the dimension of domain wall width. On the other hand, the critical size for the bi-stability of L10-FePt is about 60 nm, and its magnetization reversal proceeds via domain wall displacement even for such a small dot size. These reversal behaviors, depending on the magnetic materials, might be attributed to the difference in structural inhomogeneity, such as defects. In addition to the magnetic properties, the structural uniformity of the material could be crucial for the BPM application.  相似文献   

20.
The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd–Fe–Co–B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号