首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetic domain wall (DW) injected and pinned at a notch in a permalloy nanowire is shown to exhibit four well-defined magnetic states, vortex and transverse, each with two chiralities. These states, imaged using magnetic force microscopy, are readily detected from their different resistance values arising from the anisotropic magnetoresistance effect. Whereas distinct depinning fields and critical depinning currents in the presence of magnetic fields are found, the critical depinning currents are surprisingly similar for all four DW states in low magnetic fields. We observe current-induced transformations between these DW states below the critical depinning current which may account for the similar depinning currents.  相似文献   

2.
We report on cyclic anisotropic magnetoresistance change induced by current pulse injection in perpendicularly magnetized Co/Ni nanowire. By alternating the polarity of the injection pulse, domain walls (DWs) can be deterministically created and annihilated within the nanowire. The injection induces a combined effect of spin transfer torque and Oersted field that leads to simultaneous creation and driving of DWs in the nanowire. DW created by single pulse injection exhibits a fixed depinning field. For multi-pulse injection, the depinning field increases and this is ascribed to the formation of DWs with opposite chirality.  相似文献   

3.
《Current Applied Physics》2018,18(2):236-240
The complete understanding of domain wall (DW) dynamics is important in the design of future spintronic devices. The characteristics of faster time-scale and lower current amplitude to move DW along nanowire are crucial in fabrication upgrade. In this study, we have investigated depinning behavior of magnetic domain wall triggered by nanosecond current pulse in notched Permalloy nanowires by means of micromagnetic simulation. We introduced double-triangular notch as the constrictions in the nanowire. The non-adiabaticity of the spin-transfer-torque is considered in simulation by varying the non-adiabatic constant (β) value. We observed that the depinning current density (Jd) was not significantly affected by β for notch size (s) < 50 nm. Interestingly, we found that the depinning time (td) for β ≥ 0.04 was slightly constant for all the cases with s > 70 nm, where the DW structure was kept to be a transverse structure during the depinning process. The broadly applicable depinning behavior is considered to contribute to the development of high-speed memory storage devices based on magnetic domain wall.  相似文献   

4.
We study field-driven domain wall (DW) motion in nanowires with perpendicular magnetic anisotropy using finite element micromagnetic simulations. Edge roughness is introduced by deforming the finite element mesh, and we vary the correlation length and magnitude of the roughness deformation separately. We observe the Walker breakdown both with and without roughness, with steady DW motion for applied fields below the critical Walker field H(c), and oscillatory motion for larger fields. The value of H(c) is not altered in the presence of roughness. The edge roughness introduces a depinning field. During the transient process of depinning, from the initial configuration to steady DW motion, the DW velocity is significantly reduced in comparison to that for a wire without roughness. The asymptotic DW velocity, on the other hand, is virtually unaffected by the roughness, even though the magnetization reacts to the edge distortions during the entire course of motion, both above and below the Walker breakdown. A moving DW can become pinned again at some later point ('dynamic pinning'). Dynamic pinning is a stochastic process and is observed both for small fields below H(c) and for fields of any strength above H(c). In the latter case, where the DW shows oscillatory motion and the magnetization in the DW rotates in the film plane, pinning can only occur at positions where the DW reverses direction and the instantaneous velocity is zero, i.e., at the beginning or in the middle of a positional oscillation cycle. In our simulations pinning was only observed at the beginnings of cycles, where the magnetization is pointing along the wire. The depinning field depends linearly on the magnitude of the edge roughness. The strongest pinning fields are observed for roughness correlation lengths that match the domain wall width.  相似文献   

5.
Nanometer scale observation of the depinning of a narrow domain wall (DW) under a spin current is reported. We studied approximately 12 nm wide 1D Bloch DWs created in thin films exhibiting perpendicular magnetic anisotropy. Magnetotransport measurements reveal thermally assisted current-driven DW motion between pinning sites separated by as little as 20 nm. The efficiency of current-driven DW motion assisted by thermal fluctuations is measured to be orders of magnitude higher than has been found for in-plane magnetized films, allowing us to control DW motion on a nanometer scale at low current densities.  相似文献   

6.
Contact angle hysteresis on nano-structured surfaces   总被引:1,自引:0,他引:1  
We present results from an experimental study on the phenomenon of contact angle hysteresis on solid surfaces decorated by a random array of nanometric hollows. For weak values of the areal density of defects φd, the hysteresis H increases linearly with φd. This evolution is described by a pinning–depinning process of the contact line by individual defects. At higher values of φd, a collective pinning effect appears and H decreases with increasing φd. In the linear regime, our experimental results are compared to theoretical predictions for contact angle hysteresis induced by a single isolated defect on the solid surface. We suggest that the crossover from the individual to the collective pinning effects could be interpreted in terms of an overlapping of wetting cross sections. Finally, we analyse the influence of both the size and the morphology (hollows/hillocks) of defects on the anchorage of the contact line.  相似文献   

7.
Qing-Bao Ren  Meng-Bo Luo 《Physics letters. A》2013,377(31-33):1966-1969
We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.  相似文献   

8.
We study the steady-state low-temperature dynamics of an elastic line in a disordered medium below the depinning threshold. Analogously to the equilibrium dynamics, in the limit T-->0, the steady state is dominated by a single configuration which is occupied with probability 1. We develop an exact algorithm to target this dominant configuration and to analyze its geometrical properties as a function of the driving force. The roughness exponent of the line at large scales is identical to the one at depinning. No length scale diverges in the steady-state regime as the depinning threshold is approached from below. We do find a divergent length, but it is associated only with the transient relaxation between metastable states.  相似文献   

9.
Ferromagnetic domain-wall pinning and depinning mechanisms were investigated at permalloy nanowire notches using a micromagnetic calculation. A unique depinning field originated from the symmetric double notches irrespective of the wall polarity or the propagation direction, whereas several distinct pinning mechanisms appeared from single or asymmetric notches. The depinning field was principally determined by the exiting notch slope due to the dynamic narrowing of the domain wall thickness.  相似文献   

10.
We have explored the shear plasticity of charge density waves (CDWs) in NbSe3 samples with cross sections having a single microfabricated thickness step. Shear stresses along the step result from thickness-dependent CDW pinning. For small thickness differences the CDW depins elastically at the volume average depinning field. For large thickness differences the thicker, more weakly pinned side depins first via plastic shear, and shear plasticity contributes substantial dissipation well above the depinning field. A simple model describes the qualitative features of our data and yields a value for the CDW's shear strength of approximately 9.5 x 10(3) Nm(-2). This value is orders of magnitude smaller than the CDW's longitudinal modulus but much larger than corresponding values for flux line lattices, and in part explains the relative coherence of the CDW response.  相似文献   

11.
We study the pinning-depinning phenomenon of a contact line on a solid surface decorated by a random array of nanometric structures. For this purpose, we have investigated the contact angle hysteresis behaviour of six different wetting and non-wetting fluids with surface tensions varying from 25 to 72mN m^-1. For low values of the areal density of defects φd, the hysteresis H increases linearly with φd indicating that “individual” defects pin the contact line. Then, from a given value of φd, the hysteresis H becomes to decrease with increasing φd, indicating a new kind of collective depinning. These two regimes were observed for all fluids used. In both cases, our experimental results are compared with the theoretical predictions for contact angle hysteresis induced by single or multiple topographical defects. We ascribe the decrease of H to the formation of cavities along the wetting front.  相似文献   

12.
We introduce a toy model, which represents a simplified version of the problem of the depinning transition in the limit of strong disorder. This toy model can be formulated as a simple renormalization transformation for the probability distribution of a single real variable. For this toy model, the critical line is known exactly in one particular case and it can be calculated perturbatively in the general case. One can also show that, at the transition, there is no fixed distribution accessible by renormalization which corresponds to a disordered fixed point. Instead, both our numerical and analytic approaches indicate a transition of infinite order (of the Berezinskii–Kosterlitz–Thouless type). We give numerical evidence that this infinite order transition persists for the problem of the depinning transition with disorder on the hierarchical lattice.  相似文献   

13.
14.
We observe the dynamics of a single magnetic vortex pinned by a defect in a ferromagnetic film. At low excitation amplitudes, the vortex core gyrates about its equilibrium position with a frequency that is characteristic of a single pinning site. At high amplitudes, the frequency of gyration is determined by the magnetostatic energy of the entire vortex, which is confined in a micron-scale disk. We observe a sharp transition between these two amplitude regimes that is due to depinning of the vortex core from a local defect. The distribution of pinning sites is determined by mapping fluctuations in the frequency as the vortex core is displaced by a static in-plane magnetic field.  相似文献   

15.
We report studies of the behaviour of a single driven domain wall in the 2-dimensional non-equilibrium zero temperature random-field Ising model, closely above the depinning threshold. It is found that even for very weak disorder, the domain wall moves through the system in percolative fashion. At depinning, the fraction of spins that are flipped by the proceeding avalanche vanishes with the same exponent as the infinite percolation cluster in percolation theory. With decreasing disorder strength, however, the size of the critical region decreases. Our numerical simulation data appear to reflect a crossover behaviour to an exponent at zero disorder strength. The conclusions of this paper strongly rely on analytical arguments. A scaling theory in terms of the disorder strength and the magnetic field is presented that gives the values of all critical exponent except for one, the value of which is estimated from scaling arguments. Received: 13 February 1998 / Accepted: 30 March 1998  相似文献   

16.
We use the high spatial sensitivity of the anomalous Hall effect in the ferromagnetic semiconductor Ga(1-x)Mn(x)As, combined with the magneto-optical Kerr effect, to probe the nanoscale elastic flexing behavior of a single magnetic domain wall in a ferromagnetic thin film. Our technique allows position sensitive characterization of the pinning site density, which we estimate to be ~10(14) cm(-3). Analysis of single site depinning events and their temperature dependence yields estimates of pinning site forces (10 pN range) as well as the thermal deactivation energy. Our data provide evidence for a much higher intrinsic domain wall mobility for flexing than previously observed in optically probed μm scale measurements.  相似文献   

17.
We demonstrate that fluorescence of single molecules in the nanometric vicinity of a thin gold film can be effectively excited and detected through the film with an epi-illumination scanning confocal microscope. A full theoretical treatment of the fluorescence signal indicates that both excitation and emission are surface-plasmon mediated. Remarkably, the number of photons detectable from chromophores perpendicular to the interface is enhanced by the presence of the metal.  相似文献   

18.
By means of numerical simulations based on Ginzburg-Landau theory, we study the vortex depinning from a columnar defect in a superconducting film. We evaluate the limiting thickness of the film, below which the depinning does not occur even under an application of the magnetic field perpendicular to the columnar defect. The limiting thickness is a measure of the pinning strength of the columnar defect. The dependence of this limiting thickness on the magnitude of the applied field is obtained for two types of columnar defects.  相似文献   

19.
We report direct observation of current-driven magnetic domain wall (DW) displacement by using a well-defined single DW in a microfabricated magnetic wire with submicron width. Magnetic force microscopy visualizes that a single DW introduced in a wire is displaced back and forth by positive and negative pulsed current, respectively. The direct observation gives quantitative information on the DW displacement as a function of the intensity and the duration of the pulsed current. The result is discussed in terms of the spin-transfer mechanism.  相似文献   

20.
We present an investigation of the adhesive properties of latex films with nanometric thickness through force spectroscopy using an atomic force microscope (AFM). The AFM tip can be used to indent and excite mechanically one single latex particle, and provides an adhesion test which resembles macroscopic probe tack test, but at nanometric scales. We show that this AFM nanotack test can be analyzed quantitatively, normalizing the total rupture energy by the contact area formed during the indentation step. This contact area depends upon the mechanical properties and environment of the latex particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号