首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spin-polarized tunneling current through a double barrier resonant tunneling diode (RTD) made with a semimagnetic semiconductor is studied theoretically. The calculated spin-polarized current and polarization degree are in agreement with recent experimental results. It is predicted that the polarization degree can be modulated continuously from +1 to −1 by changing the external voltage such that the quasi-confined spin-up and spin-down energy levels shift downwards from the Fermi level to the bottom of the conduction band. The RTD with low potential barrier or the tunneling through the second quasi-confined state produces larger spin-polarized current. Furthermore a higher magnetic field enhances the polarization degree of the tunneling current.  相似文献   

2.
The scattering of a spin-polarized quantum wave on a potential barrier is investigated. The vectors of spin-polarization of incident wave and the internal magnetic field (magnetization) of the barrier are not generally located in the same plane and they form a noncomplanar system. The dependences of the polarization vectors of waves scattered forward and backward on the degrees of freedom determining the orientation of the barrier magnetization are investigated.  相似文献   

3.
We have measured the statistical properties of magnetic reversal in nanomagnets driven by a spin-polarized current. Like reversal induced by a magnetic field, spin-transfer-driven reversal near room temperature exhibits the properties of thermally activated escape over an effective barrier. However, the spin-transfer effect produces qualitatively different behaviors than an applied magnetic field. We discuss an effective current vs field stability diagram. If the current and field are tuned so that their effects oppose one another, the magnet can exhibit telegraph-noise switching.  相似文献   

4.
磁电垒结构中自旋极化输运性质的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
秦建华  郭永  陈信义  顾秉林 《物理学报》2003,52(10):2569-2575
研究了电子隧穿几类磁电垒结构的自旋极化输运性质,导出统一的传输概率公式,揭示了非 均匀磁场的分布与自旋过滤的关系,同时表明采用有效朗德因子较大的半导体材料可以显著 增强磁电垒结构的自旋过滤效果. 关键词: 磁电垒 自旋过滤 自旋电子学 自旋极化  相似文献   

5.
We derive an expression for the spin current through a tunnel barrier in terms of many-body Green’s functions. The spin current has two possible contributions. One is associated with angular momentum transfer due to spin-polarized charge current crossing the junction. If there are magnetic moments on both sides of the tunnel junction, due to spin accumulation or ferromagnetic ordering, then there is a second contribution related to the exchange coupling between the moments.  相似文献   

6.
To clarify the contributions of spin-polarized current and spin accumulation to the current-induced magnetization switching, the effects of the top electrode size of the magnetic nanopillar are investigated both theoretically and experimentally. Theoretical calculation demonstrates that the spin-polarized current and the spin accumulation can be adjusted in opposite directions by modifying the size of the top electrode. Increase in the size of the top electrode suppresses the spin accumulation but enhances the spin-polarized current inside the nanopillar. On the other hand, it is shown experimentally that the nanopillar with a wide top electrode exhibits small critical switching current compared to the nanopillar with a narrow top electrode. The results suggest that the spin-polarized current contributes to the current-induced magnetization switching dominantly over the spin accumulation.  相似文献   

7.
The influence of magnetic vector potential barrier (MVPB) on the spin-polarized transport of massless Dirac particles in ferromagnetic graphene is studied theoretically. The phenomenon of Klein tunneling of relativistic particles across a rectangular potential barrier prevents any of the massless fermions from being confined but they can be electrically confined by quantum dots with integrable dynamics (Bardarson et al., 2009) [36]. Utilization of only the in-plane exchange splitting in the ferromagnetic graphene cannot produce 100% spin polarization. This tunneling can be confined using the magnetic vector potential barrier, which leads to high degree of spin polarization. By combining the orbital effect and the Zeeman interaction in graphene junction, it is found that the junction mimics behavior of half-metallic tunneling junction, in which it acts as a metal to particles of one spin orientation but as an insulator or a semiconductor to those of the opposite orientation. The idea of the half-metallic tunneling junction can provide a source of ∼100% spin-polarized current, which is potentially very useful. Adjustment of the position of the Fermi level in ferromagnetic layer by placing a gate voltage on top of the ferromagnetic layer shows that reverse of the orientation of the completely spin-polarized current passing through the junction is controlled by adjusting the gate voltage. These interesting characteristics should lead to a practical gate voltage controlled spin filtering and spin-polarized switching devices as a perfect spin-polarized electron source for graphene-based spintronics.  相似文献   

8.
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. Th  相似文献   

9.
Based on the nearly free-electron approximation, we have investigaed the temperature (T) dependence of spin-polarized tunneling in the magnetic tunnel junction with an asymmetrical barrier, with emphasis on the variation of molecular field with T in the same way as that of surface magnetization. It is found that the Slonczewski model can describe well the T depen-dence of spin-polarized tunneling, while the Julliere model only describes the T dependence of JMR qualitatively, but does accurately that of the difference of tunneling conductance between the parallel and antiparallal alignments for the magnetizations of FMs; Differing from the pre-vious finding, we find the electron spin polarization is not strictly proportional to the surface magnetization, for the former decreases with the increasing T more rapidly than the latter does.  相似文献   

10.
We present measurements of magnetic tunnel junctions made using a self-assembled-monolayer molecular barrier. Ni-octanethiol-Ni samples were fabricated in a nanopore geometry. The devices exhibit significant changes in resistance as the angle between the magnetic moments in the two electrodes is varied, demonstrating that low-energy electrons can traverse the molecular barrier while remaining spin polarized. An analysis of the voltage and temperature dependence of the data suggests that the spin-polarized transport signals can be degraded by localized states in the molecular barriers.  相似文献   

11.
A theoretical concept of local manipulation of magnetic domain walls is introduced. In the proposed procedure, a domain wall is driven by a spin-polarized current induced by a magnetic tip, as used in a scanning tunneling microscope, placed above a magnetic nanostripe and then moved along its long axis with a current flowing through the vacuum barrier. The angular momentum from the spin-polarized current exerts a torque on the magnetic moments underneath the tip and leads to a displacement of the domain wall. Particularly, the manipulation of a ferromagnetic 180° transverse domain wall has been studied by means of Landau-Lifshitz-Gilbert dynamics and Monte Carlo simulations. Different relative orientations of the tip and the sample magnetization have been considered.  相似文献   

12.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field.  相似文献   

13.
K N Shrivastava 《Pramana》1985,25(4):491-496
We find that in the spin-polarized hydrogen, Bose condensation occurs for certain quantized values of the magnetic field. Once the field is fixed, sweeping of the radio-frequency results in nuclear magnetic resonance so that condensation and NMR occur simultaneously. We have found that nuclear self-induced transparency occurs. A new excitation designated by the present author as superboojum, which is a discontinuity in the hydrodynamic equations in spin-polarized hydrogen having finite nuclear as well as electronic spin is discovered.  相似文献   

14.
借助自旋极化隧道模型,对具有不同居里温度的Mn基钙铁矿氧化物的电阻率随温度和磁场的变化行为进行了计算。结果表明,模型给出的结果和献上普遍报道的实验结果在行为上有非常好的一致性,表明这类材料中所观察到的电子输运和磁性质可以基于这一模型而得以理解。  相似文献   

15.
The proximity effect in a model manganite-cuprate system is investigated theoretically. We consider a situation in which spin-polarized electrons in manganite layers antiferromagnetically couple with electrons in cuprate layers as observed experimentally. The effect of the interfacial magnetic coupling is found to be much stronger than the injection of spin-polarized electrons into the cuprate region. As a result, the superconducting transition temperature depends on the thickness of the cuprate layer significantly. Since the magnetic coupling creates negative polarization, an applied magnetic field and the negative polarization compete, resulting in the inverse spin-switch behavior where the superconducting transition temperature is increased by applying a magnetic field.  相似文献   

16.
For a spin-polarized plane wave passing through a spin-rotator containing uniform magnetic field, we provide a detailed analysis for solving the appropriate Schrödinger equation. A modified expression for spin precession is obtained which reduces to the standard Larmor precession relation when kinetic energy is very large compared to the spin-magnetic field interaction. We show that there are experimentally verifiable regimes of departure from the standard Larmor precession formula. The treatment is then extended to the case of a spin-polarized wave packet passing through a uniform magnetic field. The results based on the standard expression for Larmor precession and that obtained from the modified formula are compared in various regimes of the experimental parameters.  相似文献   

17.
By solving the Bogoliubov-de Gennes equation, the influence of the interplay of Rashba spin-orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder-Tinkham-Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin-orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.  相似文献   

18.
By micromagnetic simulation, we show that faster propagation of 360° domain wall in magnetic nanostrips under spin-polarized currents in conjunction with out-of-plane magnetic fields can be obtained. Without magnetic field, the annihilation process of 360° domain wall is irreversible when spin-polarized current velocity above about 220 m/s. The annihilation of 360° domain wall can be suppressed by an out-of -plane magnetic field and domain wall speed can exceed 1500 m/s at large current density. This is different from the case exhibited in 180° domain wall. The underlying mechanism is investigated by changing the state of 360° domain wall and the direction of out-of-plane field.  相似文献   

19.
An analytical approach is presented for the study of magnetization dynamics driven by spin-polarized currents. Two cases are considered: (i) magnetic layers with in-plane uniaxial anisotropy; (ii) magnetic layers with uniaxial anisotropy and applied field perpendicular to the layer plane. Theoretical predictions are obtained for the existence of stationary modes and self-oscillations of magnetization by solving the deterministic Landau-Lifshitz-Gilbert equation with Slonczewski spin-torque term. Thermal fluctuations are studied by deriving the corresponding Fokker-Planck equation for the magnetization probability distribution. Analytical procedures to estimate the effective potential barrier separating self-oscillatory regimes and/or stationary modes are proposed.  相似文献   

20.
Taking into account the nonequilibrium spin accumulation, we apply a quantum-statistical approach to study the spin-polarized transport in a two-dimensional ferromagnet/semiconductor/ferromagnet (FM/SM/FM) double tunnel junction. It is found that the effective spin polarization is raised by increasing the barrier strength, resulting in an enhancement of the tunneling magnetoresistance (TMR). The nonequilibrium spin accumulation in SM may appear in both antiparallel and parallel alignments of magnetizations in two FMs, in particular for high bias voltages. The effects of spin accumulation and TMR on the bias voltage are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号