首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The realization of coupled qubit setups is a fundamental step towards implementation of universal quantum computing architectures. Solid state nano- devices, despite being very promising from the point of view of scalability and integration, strongly suffer from various noise sources. Particular detrimental role is played by low-frequency noise components. Here we identify stability conditions against low-frequency charge noise of two Josephson qubits in a fixed coupling scheme implementation. The effects of adiabatic noise in an i-SWAP protocol is discussed. Reduced sensitivity to charge flutuations with respect to the single qubit setup is predicted.  相似文献   

2.
We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations k(B)T becomes larger than the energy level spacing variant Planck's over h omega of the qubit. In contrast, a sample of much shorter coherence times displayed semiclassical oscillations very similar to Rabi oscillation, but showing a qualitatively different temperature dependence. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.  相似文献   

3.
We introduce a method for finding the required control parameters for a quantum computer that yields the desired quantum algorithm without invoking elementary gates. We concentrate on the Josephson charge-qubit model, but the scenario is readily extended to other physical realizations. Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to significantly accelerate quantum algorithms in order to fight decoherence.  相似文献   

4.
A goal of quantum information technology is to control the quantum state of a system, including its preparation, manipulation, and measurement. However, scalability to many qubits and controlled con-nectivity between any selected qubits are two of the major stumbling blocks to achieve quantum com-puting (QC). Here we propose an experimental method, using Josephson charge qubits, to efficiently solve these two central problems. The proposed QC architecture is scalable since any two charge qubits can be effectively coupled by an experimentally accessible inductance. More importantly, we formulate an efficient and realizable QC scheme that requires only one (instead of two or more) two-bit operation to implement conditional gates.  相似文献   

5.
Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors approximately 10(-3)-10(-4) in realistic cases) allows us to cross the fault tolerance threshold.  相似文献   

6.
We present a new method to measure 1/f noise in Josephson quantum bits (qubits) that yields low-frequency spectra below 1 Hz. A comparison of the noise taken at positive and negative bias of a phase qubit shows the dominant noise source to be flux noise and not junction critical-current noise, with a magnitude similar to that measured previously in other systems. Theoretical calculations show that the level of flux noise is not compatible with the standard model of noise from two-level state defects in the surface oxides of the films.  相似文献   

7.
We propose and study a model of dephasing due to an environment of bistable fluctuators. We apply our analysis to the decoherence of Josephson qubits, induced by background charges present in the substrate, which are also responsible for the 1/f noise. The discrete nature of the environment leads to a number of new features which are mostly pronounced for slowly moving charges. Far away from the degeneracy this model for the dephasing is solved exactly.  相似文献   

8.
刘海燕  王继锁  梁宝龙 《中国物理 B》2010,19(10):100314-100314
Based on the standard canonical quantization principle, this paper gives the quantization scheme for the charge qubits mesoscopic circuit including three Josephson junctions coupled capacitively. By virtue of the Heisenberg equation, the time evolution of the phase difference operators across the polar plates and the number operators of the Cooper-pairs on the island are investigated and the modification of the Josephson equation is discussed. The time evolution of the phase difference operators is analysed when the Josephson junctions are irradiated by the external electrical field, which is referred to as also the obtainable controlling parameter.  相似文献   

9.
A theoretical interpretation of the recent experiments of Astafiev et al. on the T1-relaxation rate in Josephson charge qubits is proposed. The experimentally observed reproducible nonmonotonic dependence of T1 on the splitting E(J) of the qubit levels suggests further specification of the previously proposed models of the background charge noise. From our point of view the most promising is the "Andreev fluctuator" model of the noise. In this model the fluctuator is a Cooper pair that tunnels from a superconductor and occupies a pair of localized electronic states. Within this model one can naturally explain both the average linear T1(E(J)) dependence and the irregular fluctuations.  相似文献   

10.
采用数值仿真的方法研究了热噪声对约瑟夫森结I-V特性及微波感应台阶的影响。研究表明,热噪声导致约瑟夫森结的I-V特性曲线呈现"圆拱化",也使得微波感应台阶高度减小。得出了取不同约瑟夫森结临界电流和结电阻时,热噪声对台阶的影响规律  相似文献   

11.
We analyze a controllable generation of maximally entangled mixed states of a circuit containing two-coupled superconducting charge qubits. Each qubit is based on a Cooper pair box connected to a reservoir electrode through a Josephson junction. Illustrative variational calculations were performed to demonstrate the effect on the two-qubits entanglement. At sufficiently deviation between the Josephson energies of the qubits and/or strong coupling regime, maximally entangled mixed states at certain instances of time is synthesized. We show that entanglement has an interesting subsequent time evolution, including the sudden death effect. This enables us to completely characterize the phenomenon of entanglement sharing in the coupling of two superconducting charge qubits, a system of both theoretical and experimental interest.  相似文献   

12.
Adopting the framework of two-coupled superconducting charges model, we derive a general formula for the total correlation function between the two charge qubits initially prepared in a mixed state. The impact of the different parameters of the system is explicitly investigated. We have identified a class of two-qubit states that have rich dynamics when the deviation between the characteristic energies of the charge qubits tends to a minimum value. Present calculations show that the total correlation decreases abruptly to zero in a finite time due to the influence of the decoherence.  相似文献   

13.
Motivated by several experimental activities to detect charge noise produced by a mesoscopic conductor with a Josephson junction as on-chip detector, the switching rate out of its zero-voltage state is studied. This process is related to the problem of thermal escape in presence of non-Gaussian fluctuations. In the relevant case of weak higher than second order cumulants, an effective Fokker-Planck equation is derived, which is then used to obtain an explicit expression for the escape rate. Specific results for the rate asymmetry due to the third moment of current noise allow to analyze experimental data and to optimize detection circuits.  相似文献   

14.
We propose a scheme of measuring the non-Gaussian character of noise by a hysteretic Josephson junction in the macroscopic quantum tunneling regime. We model the detector as an (under)damped LC resonator. It transforms Poissonian charge injection into current through the detector, which samples the injection statistics over a floating time window of length approximately Q/omega(J), where Q is the quality factor of the resonator and omega(J) its resonance frequency. This scheme ought to reveal the Poisson character of charge injection in a detector with realistic parameters.  相似文献   

15.
Superconducting quantum circuits based on Josephson junctions have made rapid progress in demonstrating quantum behavior and scalability. However, the future prospects ultimately depend upon the intrinsic coherence of Josephson junctions, and whether superconducting qubits can be adequately isolated from their environment. We introduce a new architecture for superconducting quantum circuits employing a three-dimensional resonator that suppresses qubit decoherence while maintaining sufficient coupling to the control signal. With the new architecture, we demonstrate that Josephson junction qubits are highly coherent, with T2 ~ 10 to 20 μs without the use of spin echo, and highly stable, showing no evidence for 1/f critical current noise. These results suggest that the overall quality of Josephson junctions in these qubits will allow error rates of a few 10(-4), approaching the error correction threshold.  相似文献   

16.
We show how to realize a “protected” qubit by using a fully frustrated Josephson junction ladder (JJL) with Mobius boundary conditions. Such a system has been recently studied within a twisted conformal field theory (CFT) approach [G. Cristofano, G. Maiella, V. Marotta, Mod. Phys. Lett. A 15 (2000) 1679; G. Cristofano, G. Maiella, V. Marotta, G. Niccoli, Nucl. Phys. B 641 (2002) 547] and shown to develop the phenomenon of flux fractionalization [G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, Eur. Phys. J. B 49 (2006) 83]. The relevance of a “closed” geometry has been fully exploited in relating the topological properties of the ground state of the system to the presence of half flux quanta and the emergence of a topological order has been predicted [G. Cristofano, V. Marotta, A. Naddeo, J. Stat. Mech.: Theory Exp. (2005) P03006]. In this Letter the stability and transformation properties of the ground states under adiabatic magnetic flux change are analyzed and the deep consequences on the realization of a solid state qubit, protected from decoherence, are presented.  相似文献   

17.
The role of thermal and non-Gaussian noise on the dynamics of driven short overdamped Josephson junctions is studied. The mean escape time of the junction is investigated considering Gaussian, Cauchy-Lorentz and Lévy-Smirnov probability distributions of the noise signals. In these conditions we find resonant activation and the first evidence of noise enhanced stability in a metastable system in the presence of Lévy noise. For Cauchy-Lorentz noise source, trapping phenomena and power law dependence on the noise intensity are observed.  相似文献   

18.
We discuss the relaxation and dephasing rates that result from the control and the measurement setup itself in experiments on Josephson persistent-current qubits. For control and measurement of the qubit state, the qubit is inductively coupled to electromagnetic circuitry. We show how this system can be mapped on the spin-boson model, and how the spectral density of the bosonic bath can be derived from the electromagnetic impedance that is coupled to the qubit. Part of the electromagnetic environment is a measurement apparatus (DC-SQUID), that is permanently coupled to the single quantum system that is studied. Since there is an obvious conflict between long coherence times and an efficient measurement scheme, the measurement process is analyzed in detail for different measurement schemes. We show, that the coupling of the measurement apparatus to the qubit can be controlled in situ. Parameters that can be realized in experiments today are used for a quantitative evaluation, and it is shown that the relaxation and dephasing rates that are induced by the measurement setup can be made low enough for a time-resolved study of the quantum dynamics of Josephson persistent-current qubits. Our results can be generalized as engineering rules for the read-out of related qubit systems. Received 4 September 2002 Published online 27 January 2003 RID="a" ID="a"Present address: Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138, USA RID="b" ID="b"Present address: Sektion Physik and CeNS, Ludwig-Maximilians Universit?t, Theresienstr. 37, 80333 Munich, Germany e-mail: wilhelm@theorie.physik.uni-muenchen.de  相似文献   

19.
We measure current fluctuations of mesoscopic devices in the quantum regime, when the frequency is of the order of or higher than the applied voltage or temperature. Detection is designed to probe separately the absorption and emission contributions of current fluctuations, i.e. the positive and negative frequencies of the Fourier transformed nonsymmetrized noise correlator. It relies on measuring the quasiparticles photon assisted tunneling current across a superconductor-insulator-superconductor junction (the detector junction) caused by the excess current fluctuations generated by quasiparticles tunneling across a Josephson junction (the source junction). We demonstrate unambiguously that the negative and positive frequency parts of the nonsymmetrized noise correlator are separately detected and that the excess current fluctuations of a voltage biased Josephson junction present a strong asymmetry between emission and absorption.  相似文献   

20.
The influence of a constant magnetic field on the maximum Josephson current of a double-barrier junction is studied. Owing to the peculiarity of the current–phase relation of this composite device, the resulting Fraunhofer-like pattern shows an overall enhancement of the maximum Josephson current with respect to the usual single-junction curves for very small difference in the coupling energies of the two pairs of adjacent layers in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号