首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Kinetic equations containing terms for spatial transport, body forces, and particle–particle collisions occur in many applications (e.g., rarefied gases, dilute granular gases, fluid-particle flows). The direct numerical solution of the kinetic equation is usually intractable due to the large number of independent variables. A useful alternative is to reformulate the problem in terms of the moments of the velocity distribution function. Closure of the moment equations is challenging for flows sufficiently far away from the Maxwellian limit. In previous work, a quadrature-based third-order moment closure was derived for approximating solutions to the kinetic equation for arbitrary Knudsen number. A key component of quadrature-based closures is the moment-inversion algorithm used to find the non-negative weights and velocity abscissas. Here, a robust inversion procedure is proposed for three-component velocity moments up to ninth order. By reconstructing the velocity distribution function, the spatial fluxes in the moment equations are treated using a kinetic-based finite-volume solver. Because the quadrature-based moment method employs the moment transport equations directly instead of a discretized form of the kinetic equation, the mass, momentum and energy are conserved for arbitrary Knudsen and Mach numbers. The computational algorithm is tested for the Riemann shock problem and, for increasing Knudsen numbers (i.e. larger deviations from the Maxwellian limit), the accuracy of the moment closure is shown to be determined by the discrete representation of the spatial fluxes.  相似文献   

2.
We derive a hierarchy of kinetic and macroscopic models from a noisy variant of the heuristic behavioral Individual-Based Model of Ngai et al. (Disaster Med. Public Health Prep. 3:191–195, 2009) where pedestrians are supposed to have constant speeds. This IBM supposes that pedestrians seek the best compromise between navigation towards their target and collisions avoidance. We first propose a kinetic model for the probability distribution function of pedestrians. Then, we derive fluid models and propose three different closure relations. The first two closures assume that the velocity distribution function is either a Dirac delta or a von Mises-Fisher distribution respectively. The third closure results from a hydrodynamic limit associated to a Local Thermodynamical Equilibrium. We develop an analogy between this equilibrium and Nash equilibria in a game theoretic framework. In each case, we discuss the features of the models and their suitability for practical use.  相似文献   

3.
《Physics letters. A》2006,353(6):469-474
A central problem for compressible two-pressure two-phase flow models is closure, or the proper definition of averages of nonlinear terms. We propose here new closures for the velocity and momentum equations and discuss their validation.  相似文献   

4.
Integral equation theories and Monte–Carlo simulations were used to determine the thermodynamic and structural properties of a two-dimensional asymmetric Coulomb system. We check correctness of different closures in integral equations and their ability to reproduce Kosterlitz–Thouless and vapour–liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared with Monte–Carlo data. Among selected closures, hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz–Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected.  相似文献   

5.
《Physics letters. A》2006,360(1):114-121
We propose here a new closure for compressible two-pressure two-phase flow models, which satisfies conservation requirements, boundary conditions at the edges of the mixing zone, hyperbolic stability (real eigenvalues for the characteristic version of the equations of motion) and an entropy inequality. Except for the latter, these properties are direct consequences of the proposed closures. The entropy, which is the main focus of this Letter, inequality (as opposed to entropy conservation for microphysically adiabatic processes) implies positivity for the entropy of averaging.  相似文献   

6.
We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler–Poincaré (EP) variational framework of fluid dynamics, for an averaged Lagrangian. We then state the EP Averaging Result—that GLM equations arise from GLM Hamilton’s principles in the EP framework. Next, we derive a new set of approximate small-amplitude GLM equations (gm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the gm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The gm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction (WMFI). The gm EP motion equations for compressible and incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or gm) fluid theory with a Taylor hypothesis closure (THC). Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha closure equations. We use the EP Averaging Result to bridge between the GLM equations and the Euler-alpha closure equations. Hence, combining the small-amplitude approximation with THC yields in new turbulence closure equations for compressible fluids in the EP variational framework.  相似文献   

7.
We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.  相似文献   

8.
9.
Stationary and dynamic properties of reduced density matrices can be determined from formal or approximate closures of an infinite hierarchy of equations. The local macroscopic conservation laws place weak but important constraints on the reduced density matrices which should be respected by any closure. For pairwise additive forces conditions on the closure of the one- and two-particle equations are obtained that preserve the exact functional dependence of the conserved densities and their fluxes on the reduced density matrices. To illustrate the nature of these conditions, a closure approximation suitable for a quantum gas is given, yielding an extension of the time-dependent Hartree-Fock equations for the dynamics of a nuclear fluid to include collisions.  相似文献   

10.
Shell-model studies on the N=14 and 16 shell closures in neutron-rich Be, C, O and Ne isotopes are presented. We calculate, with the WBT interaction, the excited states in these nuclei. The calculations agree with recent experiment data. Excited energies and B(E2) values are displayed to discuss the shell closures. Our results support the N=16 shell closure in these isotopes, while indicating a disappearance of N=14 shell closure in Be and C isotopes.  相似文献   

11.
Shell-model studies on the N =14 and 16 shell closures in neutron-rich Be, C, O and Ne isotopes are presented. We calculate, with the WBT interaction, the excited states in these nuclei. The calculations agree with recent experiment data. Excited energies and B(E2) values are displayed to discuss the shell closures. Our results support the N =16 shell closure in these isotopes, while indicating a disappearance of N =14 shell closure in Be and C isotopes.  相似文献   

12.
The unstrained and strained flamelet closures for filtered reaction rate in large eddy simulation (LES) of premixed flames are studied. The required sub-grid scale (SGS) PDF in these closures is presumed using the Beta function. The relative performances of these closures are assessed by comparing numerical results from large eddy simulations of piloted Bunsen flames of stoichiometric methane–air mixture with experimental measurements. The strained flamelets closure is observed to underestimate the burn rate and thus the reactive scalars mass fractions are under-predicted with an over-prediction of fuel mass fraction compared with the unstrained flamelet closure. The physical reasons for this relative behaviour are discussed. The results of unstrained flamelet closure compare well with experimental data. The SGS variance of the progress variable required for the presumed PDF is obtained by solving its transport equation. An order of magnitude analysis of this equation suggests that the commonly used algebraic model obtained by balancing source and sink in this transport equation does not hold. This algebraic model is shown to underestimate the SGS variance substantially and the implications of this variance model for the filtered reaction rate closures are highlighted.  相似文献   

13.
The simplest system in Levermore's moment hierarchy involving moments higher than second order is the five-moment closure. It is obtained by taking velocity moments of the one-dimensional Boltzmann equation under the assumption that the velocity distribution is a maximum-entropy function. The moment vectors for which a maximum-entropy function exists consequently make up the domain of definition of the system. The aim of this article is a complete characterization of the structure of the domain of definition and the connected maximum-entropy problem. The space-homogeneous case of the equation and numerical aspects are also addressed.  相似文献   

14.
F Tchangnwa Nya  A Ayadim  P Germain  S Amokrane 《J Phys Condens Matter》2012,24(32):325106, 1-325106,11
We examine the question of the accuracy of the static correlation functions used as input in the mode coupling theory (MCT) of non-ergodic states in binary mixtures. We first consider hard-sphere mixtures and compute the static pair structure from the Ornstein-Zernike equations with the Percus-Yevick closure and more accurate ones that use bridge functions deduced from Rosenfeld's fundamental measures functional. The corresponding MCT predictions for the non-ergodicity lines and the transitions between multiple glassy states are determined from the long-time limit of the density autocorrelation functions. We find that while the non-ergodicity transition line is not very sensitive to the input static structure, up to diameter ratios D(2)/D(1)?=?10, quantitative differences exist for the transitions between different glasses. The discrepancies with the more accurate closures become even qualitative for sufficiently asymmetric mixtures. They are correlated with the incorrect behavior of the PY structure at high size asymmetry. From the example of ultra-soft potential it is argued that this issue is of general relevance beyond the hard-sphere model.  相似文献   

15.
Among different approaches of the statistic treatment of the transport equations for variable-density fluid flows, a formulation is adopted which isolates the turbulent mass-fluxes contribution. It deals with centred statistical moments only. This choice enables the discussion of the transposal of constant-density closure-schemes to mass-weighted variables of heated free shear flows. The discussion focuses on first- and second-order closures for diffusion terms. The content of standard closure schemes in Favre variables is detailed. Concluding points are given concerning the relevancy of the different initial statitistical treatments to set the proper formal frame for deriving closure-schemes. Parabolic numerical simulations of heated jets including first- and second-order closures are then examined. The prediction of experimentally-asserted features of density effects on the mean field of variable density jets is verified. Some effects on turbulent quantities are underlined too. Comparaisons between mass-fluxes predicted at first- and second-order reveal that a first-order closure is likely to be sufficient.  相似文献   

16.
Systems of gas dynamics and kinetics equations for explosives with different closure schemes are considered and the physical meaning of these equations is analyzed. The adiabatic, isothermal, and kinetic schemes are compared. It is shown that the kinetic closure does not lead to any nonphysical situations when numerical algorithms are used. The applicability scope of the kinetic approach is discussed.  相似文献   

17.
Kinetic equations arise in a wide variety of physical systems and efficient numerical methods are needed for their solution. Moment methods are an important class of approximate models derived from kinetic equations, but require closure to truncate the moment set. In quadrature-based moment methods (QBMM), closure is achieved by inverting a finite set of moments to reconstruct a point distribution from which all unclosed moments (e.g. spatial fluxes) can be related to the finite moment set. In this work, a novel moment-inversion algorithm, based on 1-D adaptive quadrature of conditional velocity moments, is introduced and shown to always yield realizable distribution functions (i.e. non-negative quadrature weights). This conditional quadrature method of moments (CQMOM) can be used to compute exact N-point quadratures for multi-valued solutions (also known as the multi-variate truncated moment problem), and provides optimal approximations of continuous distributions. In order to control numerical errors arising in volume averaging and spatial transport, an adaptive 1-D quadrature algorithm is formulated for use with CQMOM. The use of adaptive CQMOM in the context of QBMM for the solution of kinetic equations is illustrated by applying it to problems involving particle trajectory crossing (i.e. collision-less systems), elastic and inelastic particle–particle collisions, and external forces (i.e. fluid drag).  相似文献   

18.
The exact formulation of the kinetic of dimer in hypercubic lattices is developed in the framework of the kinetic lattice gas model. The so-called local evolution rules are used to obtain the hierarchy of equation of motion for the correlation functions where processes like adsorption and desorption are included. The hierarchy of equations are truncated using a mean field (mn) closures which allows the analytical treatment of the system. A general expression for non-interacting dimer isotherm and two particle correlation functions are obtained in hypercubic lattices.  相似文献   

19.
湍流两相流动有燃烧颗粒相概率密度函数输运方程理论   总被引:5,自引:0,他引:5  
由有燃烧的湍流气粒两相流动的瞬态方程和统计力学概率密度函数概念出发,推导了有燃烧颗粒相的质量-动量-能量联合概率密度函数(PDF)输运方程,并对方程中条件期望项用梯度模拟概念进行了模拟封闭。封闭后的PDF方程可作为建立颗粒拟流体模型方程和封闭二阶矩模型的基础,也可以通过Monte-Carlo 法求解用以直接计算颗粒雷诺应力和湍流动能,以便和二阶 矩模型的结果相对照,改善二阶矩模型。  相似文献   

20.
Using direct numerical simulations of turbulent plane channel flow of homogeneous polymer solutions, described by the Finitely Extensible Nonlinear Elastic-Peterlin (FENE-P) rheological constitutive model, a-priori analyses of the filtered momentum and FENE-P constitutive equations are performed. The influence of the polymer additives on the subgrid-scale (SGS) energy is evaluated by comparing the Newtonian and the viscoelastic flows, and a severe suppression of SGS stresses and energy is observed in the viscoelastic flow. All the terms of the transport equation of the SGS kinetic energy for FENE-P fluids are analysed, and an approximated version of this equation for use in future large eddy simulation closures is suggested. The terms responsible for kinetic energy transfer between grid-scale (GS) and SGS energy (split into forward/backward energy transfer) are evaluated in the presence of polymers. It is observed that the probability and intensity of forward scatter events tend to decrease in the presence of polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号