首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The globular state of the homopolymer macromolecule in a blend composed of a poor solvent and an amphiphilic solvent (substrate), whose molecules tend to be aligned with the solvent concentration gradient in the inhomogeneity region, was theoretically studied. The size of a homogeneous globule and the substrate concentration in its volume were calculated in terms of a bulk approximation. After the transition of the macromolecule from the coil to the globule state, its volume first decreases with a decrease in temperature and then begins to grow due to substrate molecules penetrating the globule. The substrate concentration in the globule insignificantly exceeds that outside the globule at identical second virial coefficients of interaction between monomer units and between substrate molecules. The expression for the free energy functional depending on the volume fractions of the components and on the orientation of substrate molecules was examined in the ground-state approximation. The orientation effect leads to narrowing of the surface layer and to a decrease in the surface tension of the homogeneous globule, thereby increasing its stability with respect to the transition to the unfolded-coil state.  相似文献   

2.
Summary: The properties of a single semiflexible mushroom chain at a plane surface with a long-ranged attracting potential are studied by means of lattice Monte Carlo computer simulation using the bond fluctuation model, configurational bias algorithm for chain re-growing and the Wang-Landau sampling technique. We present the diagram of states in variables temperature T vs. strength of the adsorption potential, εw, for a quite short semiflexible chain consisting of N = 64 monomer units. The diagram of states consists of the regions of a coil, liquid globule, solid isotropic globule, adsorbed coil and cylinder-like liquid-crystalline globule. At low values of the adsorption strength εw the coil–globule and the subsequent liquid–solid globule transitions are observed upon decreasing temperature below the adsorption transition point. At high values of εw these two transitions change into a single transition from an adsorbed coil to a cylinder-like liquid-crystalline solid globule. We conclude that for a semiflexible chain the presence of a plane attracting surface favors the formation of a globule with internal liquid-crystalline ordering of bonds.  相似文献   

3.
A self-consistent-field theory was developed in the grand canonical ensemble formulation to study transitions in a helix-coil multiblock globule. Helical and coil parts are treated as stiff rods and self-avoiding walks of variable lengths correspondingly. The resulting field theory takes, in addition to the conventional Zimm-Bragg, [J. Chem. Phys. 31, 526 (1959)] parameters, also three-dimensional interaction terms into account. The appropriate differential equations which determine the self-consistent fields were solved numerically with finite element method. Three different phase states are found: open chain, amorphous globule, and nematic liquid-crystalline (LC) globule. The LC-globule formation is driven by the interplay between the hydrophobic helical segment attraction and the anisotropic globule surface energy of an entropic nature. The full phase diagram of the helix-coil copolymer was calculated and thoroughly discussed. The suggested theory shows a clear interplay between secondary and tertiary structures in globular homopolypeptides.  相似文献   

4.
Computer simulation modelling of a flexible comb copolymer with attractive interactions between the monomer units of the side chains is performed. The conditions for the coil‐globule transition, induced by the increase of attractive interaction, ε, between side chain monomer units, are analysed for different values of the number of monomer units in the backbone, N, in the side chains, n, and between successive grafting points, m. It is shown that the coil‐globule transition of such a copolymer corresponds to a first‐order phase transition. The energy of attraction (ε) required for the realisation of the coil‐globule transition decreases with increasing n and decreasing m. The coil‐globule transition is accompanied by significant aggregation of side chain units. The resulting globule has a complex structure. In the case of a relatively short backbone (small value of N), the globule consists of a spherical core formed by side chains and an enveloping shell formed by the monomer units of the backbone. In the case of long copolymers (large value of N), the side chains form several spherical micelles while the backbone is wrapped on the surfaces of these micelles and between them.  相似文献   

5.
We propose the quantitative mean-field theory of mechanical unfolding of a globule formed by long flexible homopolymer chain collapsed in poor solvent and subjected to an extensional force We show that with an increase in the applied force the globule unfolds as a whole without formation of an intermediate state. The value of the threshold force and the corresponding jump in the distance between chain ends increase with a deterioration of the solvent quality and / or with an increase in the degree of polymerization. This way of globule unfolding is compared with that in the D-ensemble, when the distance between chain ends is imposed.  相似文献   

6.
Microstructuring in the bulk of a polymer globule in a solution that contains dimeric amphiphilic molecules, in particular, surfactants, is studied in terms of the weak-segregation theory. An inhomogeneous structure can result from a decrease in free energy with the orientation of amphiphilic molecules in the region of inhomogeneity owing to the interaction of hydrophobic and polar parts of the molecules with the solvent. For the sake of simplicity, we discuss the case of identical second virial coefficients of the interaction of monomer units and amphiphilic molecules with different energies of interaction of the hydrophobic and polar parts of the molecule with the solvent. By comparing the free energy for different types of microstructures, we predict that, with deterioration in the quality of the solvent, there is an initial formation of a homogeneous globule followed by formation of a body-centered cubic structure; a hexagonal cylindrical structure; and, finally, a lamellar structure. For a low degree of amphiphilicity, the transition from a homogeneous globule to only a lamellar structure occurs. An increase in the concentration of the amphiphilic substance in the surrounding solution hinders the formation of a globule but facilitates its microstructuring, which is also promoted by an increase in the volume of the amphiphilic molecule and the difference in the interaction energies of its hydrophobic and polar parts with the solvent. Phase diagrams of a globule??s state at different values of model parameters are plotted.  相似文献   

7.
The coil collapse problem is of interest not only because it represents the simplest model of protein folding, but also because of its fundamental importance as related to polymer nanostructures and fractionation. It is extremely difficult to observe the coil-to-globule transition experimentally because at finite concentrations in a poor solvent, the macromolecules tend to aggregate due to phase separation when the collapsed state is being achieved. In the mid-1980s, two-stage kinetics of a single-chain collapse was proposed theoretically.1,2 The first successful experimental observation of a two-stage coil-to-globule transition was achieved by quenching a dilute solution of polystyrene (PS) in cyclohexane.3 By using a thinnest capillary tube cell with a wall thickness of 0.01 mm and a diameter of 5 mm for dynamic light scattering, two relaxation times, τcrum for the crumpled globule state and τeq for the compact globule state, were determined4 for the first time. The relaxation times were much slower than expected. From the size of the crumpled globule and that of the compact globule and by assuming the intraglobular density to be uniform, the volume fraction of the PS chain in the crumpled globule state, ϕcrum, and that in the compact globule state, ϕcomp, can be estimated, with ϕcrum = 0.02 and ϕcomp ∼ 0.24-0.4 at 28°C for polystyrene in cyclohexane. The results imply that a single-chain globule contains a large amount of solvent. It should also be noted that ϕcomp is temperature dependent, i.e., one would have to go to hypothetically low temperatures in order to squeeze out all the solvent (cyclohexane) in the compact PS globule. The single-chain coil collapse state could be achieved under equilibrium conditions by using a high molecular weight, Mw ∼ 1.08 × 107 g/mol; Mw/Mn < 1.06) poly(N-isopropylacrylamide) (PNIPAM) in water,<5 even though the ten million molecular weight for PNIPAM was substantially lower than that for polystyrene (Mw ∼ 50 × 106 g/mole).6 Under equilibrium conditions, it was feasible to determine both the hydrodynamic radius Rh and the radius of gyration Rg. The ratio of Rg/Rh changed from 1.45 to 0.77, clearly demonstrating the transition from the theta coil state to the compact globule state. At the maximum value of the scaled expansion factor αs3 |τ| Mw1/2, Rg/Rh = 1.33 where αs = Rg/Rg (θ) and τ = |T-θ| / θ with θ being the theta temperature. In the compact globule, Rg/Rh was of the order of 0.7, implying that the PNIPAM compact globule in water still contained ∼80% water, of the same order of magnitude as the PS compact globule in cyclohexane at 7° below its theta temperature (35°C).  相似文献   

8.
The nature of solvent molecules around proteins in native and different non-native states is crucial for understanding the protein folding problem. We have characterized two compact denatured states of glutaminyl-tRNA synthetase (GlnRS) under equilibrium conditions in the presence of a naturally occurring osmolyte, l-glutamate. The solvation dynamics of the compact denatured states and the fully unfolded state has been studied using a covalently attached probe, acrylodan, near the active site. The solvation dynamics progressively becomes faster as the protein goes from the native to the molten globule to the pre molten globule to the fully unfolded state. Anisotropy decay measurements suggest that the pre-molten-globule intermediate is more flexible than the molten globule although the secondary structure is largely similar. Dynamic light scattering studies reveal that both the compact denatured states are aggregated under the measurement conditions. The implications of solvation dynamics in aggregated compact denatured states have been discussed.  相似文献   

9.
The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial extent on the degree of polymerization of a macromolecule. Relatively short amphiphilic macromolecules in the poor-solvent region always form a spherical globule, with the transition to this globule involving one or two intermediate conformations. These are the disk globule if the Kuhn segment is relatively large and the string of spherical micelles or the disk globule in the case of relative flexible chains. The phase diagram of a long rodlike amphiphilic chain turned out to be even more complex. Namely, three characteristic regions were distinguished in the region of a poor solvent, depending on the chain rigidity: the region of a cylindrical globule without certain order in the main chain, the region of the cylindrical globule with blobs having the collagen ordering of the chain, and the region of coexistence of collagen-like and toroidal globules. In the intermediate transitional region, not only conformations of strings of spherical micelle beads but also the necklace conformations in which the polymer chain in each bead has collagen ordering can occur in this case.  相似文献   

10.
We present simulation results for the phase behavior of a single chain for a flexible lattice polymer model using the Wang-Landau sampling idea. Applying this new algorithm to the problem of the homopolymer collapse allows us to investigate not only the high temperature coil–globule transition but also an ensuing crystallization at lower temperature. Performing a finite size scaling analysis on the two transitions, we show that they coincide for our model in the thermodynamic limit corresponding to a direct collapse of the random coil into the crystal without intermediate coil–globule transition. As a consequence, also the many chain phase diagram of this model can be predicted to consist only of gas and crystal phase in the limit of infinite chain length. This behavior is in agreement with findings on the phase behavior of hard-sphere systems with a relatively short-ranged attractive square well. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2542–2555, 2006  相似文献   

11.
Summary: We studied coil-globule transitions in stiff-chain amphiphilic macromolecules via computer modeling and constructed phase diagrams for such molecules in terms of solvent quality and persistence length. We showed that the shape of the phase diagram essentially depends on the macromolecule degree of polymerization. Relatively short amphiphilic molecules always form a spherical globule in a poor solvent, and the coil-globule transition includes one or two intermediate conformations, depending on the chain's stiffness. These are a disk-like globule in case of high enough Kuhn segment length, and a pearl necklace-like structure of spherical micelles and a disk-like globule in case of relatively flexible chains. The phase diagram of a long stiff amphiphilic chain was found to be more complex still. Thus three specific regions can be distinguished in the poor solvent region, depending on the chain stiffness. These correspond to a cylindrical globule without any specific backbone ordering, a cylindrical globule containing blobs with collagen-like ordering of the chain, and co-existence of collagen-like and toroidal globules. In the intermediate transition region in this case, apart from the pearl necklace-like conformations with spherical micelles, necklace conformations can be also observed where the polymeric chain has collagen-like ordering within each bead.  相似文献   

12.
We observed phase transition and phase relaxation processes of a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution using the heterodyne transient grating (HD-TG) method combined with the laser temperature jump technique. The sample temperature was instantaneously raised by about 1.0 K after irradiation of a pump pulse to crystal violet (CV) molecules for heating, and the phase transition was induced for the sample with an initial temperature just below the lower critical solution temperature (LCST); the following phase relaxation dynamics was observed. Turbidity relaxation was observed in both the turbidity and HD-TG responses, while another relaxation process was observed only in the HD-TG response, namely via the refractive index change. It is suggested that this response is due to formation of globule molecules or their assemblies since they would have nothing to do with turbidity change but would affect the refractive index, which is dependent on the molar volume of a chemical species. Furthermore, the grating spacing dependence of the HD-TG responses suggests that the response was caused by the counter propagating diffusion of the coil molecules as a reactant species and the globule molecules as a product species and the lifetime of the globule molecules ranged from 1.5 to 5 seconds. Thus, we conclude that the turbidity reflects the dynamics of aggregate conditions, not molecular conditions. The coil and globule sizes were estimated from the obtained diffusion coefficient. The sizes of the coil molecules did not change at the initial temperatures below the LCST but increased sharply as it approaches LCST. We propose that the coil-state molecules associate due to hydrophobic interaction when the initial temperature was higher than LCST minus 0.5 K and that the globule-state molecules generated from the coil-state molecules showed a similar trend in temperature. The phase transition was also induced by heating under a microscope, and the relaxation process was followed using the fluorescence peak shift of a fluorescent molecule-labeled PNIPAM. The result also supports the existence of a globule molecule or its assembly remains for several seconds in the phase relaxation.  相似文献   

13.
The Wang-Landau Monte Carlo approach is applied to the coil-globule and melting transitions of off-lattice flexible homopolymers. The solid-liquid melting point and coil-globule transition temperatures are identified by their respective peaks in the heat capacity as a function of temperature. The melting and theta points are well separated, indicating that the coil-globule transition occurs separately from melting even in the thermodynamic limit. We also observe a feature in the heat capacity between the coil-globule and melting transitions which we attribute to a transformation from a low-density liquid globule to a high-density liquid globule.  相似文献   

14.
The conformational behavior of a single comb-shaped macromolecule with associating groups in side chains was studied by means of Monte Carlo simulation. The side chains contain two types of units, type A representing nonfunctional units (main chain units are likewise classified with type A) and type B representing functional (attracting) units. As a result of an increase in attraction energy between associating groups, the transition of the macromolecule from coil to the globule state takes place. The coil-globule transition is accompanied by segregation of unlike units; as a result, the globule has a complex structure: the core of the globule is formed by attracting groups of side chains, and the envelope is formed from soluble units of both main and side chains. The dependence of the size and shape of the macromolecule on its structural parameters, such as the length of main and side chains and the graft density of side chains, and on the position of the functional groups in side chains was examined. Along with the single globule, conformations in which the attracting units of side chains formed several bead globules were observed.  相似文献   

15.
The small r variation of the probability density P(r) for end-to-end separations of a -CH(2)CH(3) capped (-OCH(2)CH(2)-)(n) oligomer in water is computed to be closely similar to the CH(4)···CH(4) potential of mean force under the same circumstances. Since the aqueous solution CH(4)···CH(4) potential of mean force is the natural physical definition of a primitive hydrophobic bond, the present result identifies an experimentally accessible circumstance for direct observation of a hydrophobic bond which has not been observed previously because of the low solubility of CH(4) in water. The physical picture is that the soluble chain molecules carry the capping groups into aqueous solution, and permits them to find one another with reasonable frequency. Comparison with the corresponding results without the solvent shows that hydration of the solute oxygen atoms swells the chain molecule globule. This supports the view that the chain molecule globule might have a secondary effect on the hydrophobic interaction that is of first interest here. The volume of the chain molecule globule is important for comparing the probabilities with and without solvent because it characterizes the local concentration of capping groups. Study of other capping groups to enable x-ray and neutron diffraction measurements of P(r) is discussed.  相似文献   

16.
We performed simulations of the physical adsorption of a single globular chain on a surface of hemispherical shape by means of molecular dynamics simulations. For the chain, we took advantage of a united atom model. Interactions within the chain were limited to stretching, bending, and torsional as well as nonbonded interactions between the nonadjacent atoms. The interaction between each chain element and the surface formation are reigned by a Lennard–Jones potential. In this article, we focused on differences in the behavior of the adsorbed globule to the free unadsorbed one particularly in two different zones of the immediate vicinity of the surface. There were strong indications for a localized acceleration of the dynamics as compared with the bulk that appears in an increase of trans–gauche switches. For explanation we came up with an adsorption scenario. Special attention was given to the shift of the percentage of trans and gauche conformations within the globule in dependence on the strength of the adsorption potential that might be related to crystallization or glass transition. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2333–2339, 2001  相似文献   

17.
(接上期)2聚(N-异丙基丙烯酰胺)微凝胶在水中的体积相变2.1理论部分凝胶体积相变热力学:聚合物凝胶的溶胀和蜷缩可以用膨胀因子α=(V/V0)1/3=(ΦT/ΦΘ)1/3来表征,其中ΦΘ的ΦT分别是温度Θ和T下凝胶网络的体积分数。在平均场理论中,中...  相似文献   

18.
Molten globules are compact, partially folded proteins postulated to be general intermediates in protein folding. Human alpha-lactalbumin (alpha-LA) is a two-domain Ca(2+)-binding protein that partially unfolds at low pH to form a molten globule. NMR spectra of molten globules are characterized by broadened resonances due to conformational fluctuations on microsecond to millisecond time scales. These species are often studied at high temperature where NMR resonances are observed to sharpen. The effect of higher temperatures on fast time-scale backbone dynamics of molten globules has not been investigated previously. Here, 1D (15)N direct-detection and 2D indirect-detection (1)H-(15)N heteronuclear NOE experiments have been used to probe fast time-scale dynamics at low and high temperatures for three disulfide-bond variants of human alpha-LA that form molten globules. Disulfide bonds are found to have a significant effect on backbone dynamics within the beta-domain of the molten globule; within the alpha-domain, dynamics are not significantly influenced by these bonds. At 20 degrees C, backbone mobility is significantly decreased in both domains of the molten globule compared to the mobility at 40-50 degrees C. Heteronuclear NOE values determined at 20 degrees C for the alpha-domain are closely similar to those observed for native alpha-LA, indicating that the alpha-LA molten globule has even more native-like character than suggested by studies conducted at higher temperature. Our results highlight the importance of considering the temperature dependence of the molten globule ensemble when making comparisons between experimental data obtained under different conditions.  相似文献   

19.
We examine the statistics of knots with numerical simulations of a simplified model of polyethylene. We can simulate polymers of up to 1000 monomers (each representing roughly three CH(2) groups), at a range of temperatures spanning coil (good solvent) and globule (bad solvent) phases. We quantify the abundance of knots in the globule phase and in confined polymers, and their rarity in the swollen phase. Since our polymers are open, we consider (and test) various operational definitions for knots, which are rigorously defined only for closed chains. We also associate a typical size with individual knots, which are found to be small (tight and localized) in the swollen phase but large (loose and spread out) in the dense phases.  相似文献   

20.
The authors present an exact enumeration study of short self-avoiding walks in two as well as in three dimensions that addresses the question, "what is the shortest walk for which the existence of all the three scaling regimes--coil, globule, and the theta--could be demonstrated." Even though they could easily demonstrate the coil and the globule phase from free energy considerations, they could demonstrate the existence of a theta temperature only by using a scaling form for the distribution of gyration radius. That even such short walks have a scaling behavior is an unexpected result of this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号