首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Absolute intensity measurements of impurity emissions in a shock tunnel nozzle flow are presented. The impurity emission intensities were measured with a photomultiplier and optical multichannel analyser and calibrated against an intensity standard. The various metallic contaminants were identified and their intensities measured in the spectral regions 290 to 330 nm and 375 to 385 nm. A comparison with calculated fluorescence intensities for predissociated laser-induced fluorescence signals is made. It is found that the emission background is negligible for most fluorescence experiments.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

2.
Planar laser-induced fluorescence is performed in a free-piston shock tunnel by using a Raman-shifted tunable excimer laser to excite nitric oxide molecules in the flow. Two different flowfields are examined to test the difficulties associated with applying the technique to shock tunnels: the bluff body flow produced by a 25 mm diameter cylinder; and the oblique shock and expansion fan produced by a 35° half-angle wedge. For the cylinder, the maximum flow enthalpy was limited to 4.1 MJ kg due to high flow luminosity which is produced by metallic contaminants in the flow. A reflective filter is used to reduce the influence of flow luminosity making these measurements feasible. Freestream temperature measurements are in excellent agreement with those predicted from numerical flow calculations. Large uncertainties were observed for the high-temperature post-shock results. Several higher enthalpy shots (14 MJ kg) were also performed with the wedge and showed an insignificant amount of contaminant emission. Received 5 June 1996 / Accepted 8 February 1998  相似文献   

3.
Improvement of a free piston driver for a high-enthalpy shock tunnel   总被引:1,自引:0,他引:1  
In order to improve the operation of a high-enthalpy free piston shock tunnel its tuned operation was studied analytically and experimentally. First, the piston motion in the free piston driver tube was analytically solved by proposing a simple piston/gasdynamic model, and the tuned operation condition was formulated as an eigenvalue with which the piston has sufficiently high speed at the moment of diaphragm rupture, so as to maintain a constant driver gas pressure, and reduces its speed to come to rest when very closely approaching the end of the driver tube. Second, the result of this analysis was validated by its comparison with experiments which were conducted in the medium-sized free piston shock tunnel HEK installed at the NAL Kakuda Research Center. By observing the detail of piston landing at the end of the driver tube the present tuned operation was found to be successfully achieved with the operating condition given here. Its advantages in improving the pressure recovery factor and in enhancing the stagnation enthalpy were successfully demonstrated. Received 8 June 1997 / Accepted 1 October 1997  相似文献   

4.
Numerical and experimental techniques are used to model the flow and pressure distribution around the forebody of the HYFLEX hypersonic flight vehicle. We compare numerical simulation results with modified Newtonian theory and flight data to determine the accuracy of the computational fluid dynamics (CFD) technique used. The numerical simulations closely match the trends in flight data, and show that real gas effects have a small but significant influence on the nose pressure distribution. We also present pressure results from a scale-model tested in a shock tunnel, and compare them with simulation results. For the shock tunnel experiment, the model was placed such that part of the upper surface was in a region of the test flow where nonuniformities were significant, and it was shown that the numerical simulation could adequately capture these experimental flow features. The binary scaling parameter (describing the similarity in species dissociation between flight and model) was used to design the scale-model tests in the shock tunnel, and its effectiveness is discussed. We find that matching the flight Mach number in the shock tunnel experiment is not critical for reproducing flight pressure data, so long as flight velocity is matched, and binary scaling is maintained. Received 11 June 1998 / Accepted 1 September 1998  相似文献   

5.
A numerical study is presented on the response of a weakly shock compressed liquid column that contains reactive gas bubbles. Both the liquid and gas are considered compressible. Compressibility of the liquid allows calculation of shock and rarefaction waves in the pure liquid as well as in the gas/liquid mixture. A microscopic model for local bubble collapse is coupled with a macroscopic model of wave propagation through the gas/liquid mixture. In the particular cases presented here, the characteristic times of propagation of the shock wave and bubble collapse are of the same order of magnitude. Consequently, the coupling between various phenomena is very strong. The present model based on fundamental principles of two-phase fluid mechanics takes into account the coupling of localized bubble oscillations. This model is composed of a microscopic one in the scale of a bubble size, and a macroscopic one which is based on the mixture theory. The liquid under study is water, and the gas is a reactive mixture of argon, hydrogen and oxygen. Received 18 December 1995 / Accepted 2 June 1996  相似文献   

6.
During whip cracking the whip-tip reaches a supersonic velocity for a period of about 1.2 ms, thereby emitting a head wave with a parabolic-shaped geometry. A detailed study of this mechanism which encompasses the motion analysis of the whip-tip as well as the determination of the local origin of the shock emission requires a sophisticated recording technique. A pre-trigger framing high-speed video camera system was used which was triggered by an acoustical sensor and synchronized with a pulsed copper-vapour laser. The phenomena were visualized by the direct shadowgraph method and recorded cinematographically as digital images at a frame rate of 9 kHz using a CCD-matrix with pixels. The resulting series of frames allowed, for the first time, (i) a reconstruction of the whip-tip trajectory, (ii) a determination of the tuft velocity and acceleration, (iii) a correlation of whip-tip kinematics with shock wave emission, and (iv) a motion analysis of the turning and unfolding mechanism of the tuft. The tuft at the whip-tip was accelerated within a distance of about 45 cm from a Mach number of to a maximum of , thereby reaching a maximum acceleration of 50,000 g. The shock is emitted at the moment when the cracker, arriving at the turning point of the lash, is rapidly turned around. After emission of the shock wav within a short distance of only 20 cm. Received 3 March 1997 / Accepted 21 July 1997  相似文献   

7.
In this paper, the wave pattern characteristics of shock-induced two-phase nozzle flows with the quiescent or moving dusty gas ahead of the incident-shock front has been investigated by using high-resolution numerical method. As compared with the corresponding results in single-phase nozzle flows of the pure gas, obvious differences between these two kinds of flows can be obtained. Received 14 June 1996 / Accepted 19 October 1996  相似文献   

8.
In this paper, a numerical and experimental investigation of the evolution of a transmitting shock wave and its associated primary vortex loop, which are discharged from the open end of a square cross-sectional tube, is described. The experiments were conducted in the square tube connected to a diaphragmless shock tube and the flowfield was visualized from the axial direction with diffusive holographic interferometry. The numerical simulations were carried out by solving the three-dimensional Euler equations with a dispersion-controlled scheme. The numerical results were displayed in the form of interferograms to compare them with experimental interferograms. Good agreement between the numerical and experimental results was obtained. More detailed numerical calculations were carried out, from which the three-dimensional transition of the shock wave configuration from an initial planar to a spherical shape and the development of the primary vortex loop from a square shaped to a three-dimensional structure were clearly observed and interpreted. Received 29 January 1998 / Accepted 22 May 1998  相似文献   

9.
Detailed distributions of heat flux in the region of shock wave and turbulent boundary layer interaction induced by a cylinder were measured in the shock tunnel. Oil flow patterns and Schlieren photographs were taken. Empirical relations were given for determining separation shock angle, peaks of heat flux and their locations on both cylinder leading edge and flat plate surface, and other characteristic parameters of the interaction region.  相似文献   

10.
Different vibration-dissociation-vibration coupling models have been used to compute the nonequilibrium N-CH-Ar mixture flow behind a normal shock wave. A three-temperature model was used and the diffuse nature of vibrational relaxation at high temperatures was accounted for. The numerical results obtained with the Treanor and Marrone model (preferential or non preferential) and the Park model of vibration-dissociation-vibration coupling are compared. These results show that the temperatures and the concentrations are mainly affected by the value of the characteristic temperature U in the preferential model of Marrone and Treanor. An assessment of the more realistic model was realized by comparing numerical results with shock tube experiments. The influence of argon addition on the nonequilibrium emission of CN behind the shock wave was also numerically studied and compared to experimental measurements. Received 1 September 1995 / Accepted 10 December 1996  相似文献   

11.
The method of electron-beam fluorescence is applied to study the evolution of natural and artificial periodic disturbances on a developed streaky structure in the shock layer on a circular compression surface model. The model is exposed to a hypersonic nitrogen flow with a Mach number M=21 and unit Reynolds number Re1∞=6×105 m?1. Data on the effect of surface curvature and temperature on disturbance characteristics are obtained. To cite this article: S.G. Mironov, V.M. Aniskin, C. R. Mecanique 332 (2004).  相似文献   

12.
Stability of a hypersonic shock layer on a flat plate is examined with allowance for disturbances conditions on the shock wave within the framework of the linear stability theory. The characteristics of the main flow are calculated on the basis of the Full Viscous Shock Layer model. Conditions for velocity, pressure, and temperature perturbations are derived from steady Rankine–Hugoniot relation on the shock wave. These conditions are used as boundary conditions on the shock wave for linear stability equations. The growth rates of disturbances and density fluctuations are compared with experimental data obtained at ITAM by the method of electron-beam fluorescence and with theoretical data of other authors. To cite this article: A.A. Maslov et al., C. R. Mecanique 332 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号