首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In this paper, the bistatic scattering coefficient from one- and two-dimensional random surfaces using the stationary phase method and scalar approximation with shadowing effect is investigated. Both of these approaches use the Kirchhoff integral. With the stationary phase, the bistatic cross section is formulated in terms of the surface height joint characteristic function where the shadowing effect is investigated. In the case of the scalar approximation, the scattering function is computed from the previous characteristic function and in terms of expected values for the integrations over the slopes, where the shadowing effect is analysed analytically. Both of these formulations are compared with experimental data obtained from a Gaussian one-dimensional randomly rough perfectly-conducting surface. With the stationary-phase method, the results are applied to a two-dimensional sea surface.  相似文献   

2.
 针对激光点对点通信方式的不足,根据舰艇编队通信的实际需要,提出了利用海面作为激光漫反射媒介的一对多的组网通信方法,并且采用基尔霍夫近似的方法对激光海面漫反射通信的特性进行了研究。通过对激光光束入射海面后产生的散射场的分析计算,采用遮蔽函数对计算过程中的阴影效应加以修正,得出了较为准确的2维激光海面双站散射系数和后向散射系数,并进行了实验验证,说明了激光海面漫反射组网通信方法的可行性。  相似文献   

3.
When solving electromagnetic rough-surface scattering problems, the effect of shadowing by the surface roughness often needs to be considered, especially as the illumination angle approaches grazing incidence. This paper presents the Ricciardi-Sato, as well as the Wagner and the Smith formulations for calculating the monostatic and bistatic statistical shadowing functions from a one-dimensional rough stationary surface, which are valid for an uncorrelated Gaussian process with an infinite surface length. In this paper, these formulations are extended to include a finite surface length and any uncorrelated process. The inclusion of a finite surface length is needed to extend the single-reflection shadowing function to the more general multiple-reflection case, presented in the following companion paper. Comparisons of these shadowing functions with the exact numerical solution for the shadowing (using surfaces with Gaussian and Lorentzian autocorrelation functions for a Gaussian process) shows that the Smith formulation without correlation is a good approximation, and that including correlation only weakly improves the model. This paper also presents a method to include the shadowing effect in the electromagnetic scattering problem.  相似文献   

4.
Abstract

The scattering of waves by random rough surfaces has important applications in the remote sensing of oceans and land. The problem of developing a model for rough surfaces is very difficult since, at best, the scattering coefficient σ0 is dependent upon (at least) the radar frequency, geometrical and physical parameters, incident and observation angles, and polarization. The problem of electromagnetic scattering from a randomly rough surface is analysed using the Kirchhoff approximation (stationary phase, scalar approximation), the small-perturbation model and the two-scale models. A first major new consideration in this paper is the polarimetric signature calculations as a function of the transmitter location and receiver location for a bistatic radio-link. We calculate the like- and cross-polarized received power directly using the scattering coefficients, without calculating the Mueller matrix. Next, a study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models (in the bistatic case) is presented. Comparisons between the numerical calculations and the models are made for various surface rms heights and correlation lengths both normalized to the incident wavenumber (denoted by σ and L, respectively). By using these two parameters to form a two-dimensional space, the approximate regions of validity are then established. The second major new consideration is the development of a theoretical two-scale model describing bistatic reflectivity as well as the numerical results computed for the bistatic radar cross section from rough surfaces especially from the sea and snow-covered surfaces. The results are used to show the Brewster angle effect on near-grazing angle scattering.  相似文献   

5.
The scattering of waves by random rough surfaces has important applications in the remote sensing of oceans and land. The problem of developing a model for rough surfaces is very difficult since, at best, the scattering coefficient σ0 is dependent upon (at least) the radar frequency, geometrical and physical parameters, incident and observation angles, and polarization. The problem of electromagnetic scattering from a randomly rough surface is analysed using the Kirchhoff approximation (stationary phase, scalar approximation), the small-perturbation model and the two-scale models. A first major new consideration in this paper is the polarimetric signature calculations as a function of the transmitter location and receiver location for a bistatic radio-link. We calculate the like- and cross-polarized received power directly using the scattering coefficients, without calculating the Mueller matrix. Next, a study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models (in the bistatic case) is presented. Comparisons between the numerical calculations and the models are made for various surface rms heights and correlation lengths both normalized to the incident wavenumber (denoted by σ and L, respectively). By using these two parameters to form a two-dimensional space, the approximate regions of validity are then established. The second major new consideration is the development of a theoretical two-scale model describing bistatic reflectivity as well as the numerical results computed for the bistatic radar cross section from rough surfaces especially from the sea and snow-covered surfaces. The results are used to show the Brewster angle effect on near-grazing angle scattering.  相似文献   

6.
In this paper, the backscattering coefficient of a two-dimensional randomly rough perfectly-conducting surface is investigated using the Kirchhoff approach with a shadowing function. The rough surface height/slope correlations assumed to be Gaussian are accounted for in this analysis. The scattering coefficient is then formulated in terms of a characteristic function for the integrations over the surface heights, in terms of expected values for the integrations over the surface slopes. Numerical comparisons of Kirchhoff's approach (KA) with the stationary-phase (SP) approximation are made with respect to the choice of the one-dimensional surface height autocorrelation function and the shadowing effect. For an isotropic surface the results show that SP underestimated the incoherent backscattering coefficient compared with KA. Moreover, when the correlation between the slopes and the heights is neglected, the shadowing effect may be ignored.  相似文献   

7.
Abstract

In this paper, the backscattering coefficient of a two-dimensional randomly rough perfectly-conducting surface is investigated using the Kirchhoff approach with a shadowing function. The rough surface height/slope correlations assumed to be Gaussian are accounted for in this analysis. The scattering coefficient is then formulated in terms of a characteristic function for the integrations over the surface heights, in terms of expected values for the integrations over the surface slopes. Numerical comparisons of Kirchhoff's approach (KA) with the stationary-phase (SP) approximation are made with respect to the choice of the one-dimensional surface height autocorrelation function and the shadowing effect. For an isotropic surface the results show that SP underestimated the incoherent backscattering coefficient compared with KA. Moreover, when the correlation between the slopes and the heights is neglected, the shadowing effect may be ignored.  相似文献   

8.
In this paper, the monostatic (transmitter and receiver are located at the same place) and bistatic (transmitter and receiver are distinct) statistical shadowing functions from an anisotropic two-dimensional randomly rough surface are presented. This parameter is especially important in the case of grazing angles for computing the bistatic scattering coefficient in optical and microwave frequencies. The objective of this paper is to extend the previous work (Bourlier C, Berginc G and Saillard J 2002 Waves Random Media 12 145-74), valid for a one-dimensional surface, to a two-dimensional anistropic surface by considering a joint Gaussian process of surface slopes and heights separating two points of the surface. The monostatic average (statistical shadowing function average over the statistical variables) shadowing function is then performed in polar coordinates with respect to the incidence angle, the azimuthal direction and the surface height two-dimensional autocorrelation function. In addition, for a bistatic configuration, it depends on the incidence angle and azimuthal direction of the receiver. For Gaussian and Lorentzian correlation profiles and practically important power-type spectra such as the Pierson-Moskowitz sea roughness spectrum, the numerical solution, obtained from generating the surface Gaussian elevations (Monte Carlo method), is compared with the uncorrelated and correlated models. The results show that the correlation underestimates the shadow slightly, whereas the uncorrelated results weakly overpredict the shadow and are close to the numerical solution.  相似文献   

9.
The optical wave scattering from one-dimensional (1D) lossy dielectric Gaussian random rough surface is studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the shadowing effect is also taken into account to make the KA results have a high accuracy. The definition of the bistatic scattering coefficient of the modified KA and the method of moment (MOM) are unified. The characteristics of the optical wave scattering from the lossy dielectric Gaussian random rough surface of different parameters are analyzed by implementing MOM.  相似文献   

10.
In this paper, based on the fundamental formulae of the first-order and second-order Kirchhoff approx-imation mad with consideration of the shadowing effect, the backscattering enhancement of the one-dimensional very rough fractal sea surface with Pierson-Moskowitz spectrum is studied under the second-order Kirchhoff approximation at microwave frequency. The numerical results are compared with those of the first-order Kirchhoff approximation and integral equation method. The dependencies of the bistatic scattering cross section and the backscattering enhancement on the incident angle, fractal dimension, and windspeed over the sea surface are analyzed in detail.  相似文献   

11.
Abstract

In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an ‘exact’ numerical method.  相似文献   

12.
In this paper the first- and second-order Kirchhoff approximation is applied to study the backscattering enhancement phenomenon, which appears when the surface rms slope is greater than 0.5. The formulation is reduced to the geometric optics approximation in which the second-order illumination function is taken into account. This study is developed for a two-dimensional (2D) anisotropic stationary rough dielectric surface and for any surface slope and height distributions assumed to be statistically even. Using the Weyl representation of the Green function (which introduces an absolute value over the surface elevation in the phase term), the incoherent scattering coefficient under the stationary phase assumption is expressed as the sum of three terms. The incoherent scattering coefficient then requires the numerical computation of a ten- dimensional integral. To reduce the number of numerical integrations, the geometric optics approximation is applied, which assumes that the correlation between two adjacent points is very strong. The model is then proportional to two surface slope probabilities, for which the slopes would specularly reflect the beams in the double scattering process. In addition, the slope distributions are related with each other by a propagating function, which accounts for the second-order illumination function. The companion paper is devoted to the simulation of this model and comparisons with an 'exact' numerical method.  相似文献   

13.
The integral equation model (IEM) has been developed over the last decade and it has become one of the most widely used theoretical models for rough-surface scattering in microwave remote sensing. In the IEM model the shadowing function is typically either omitted or a form based on geometric optics with single reflection is used. In this paper, a shadowing function for one-dimensional rough surfaces which incorporates multiple scattering, finite surface length and both monostatic and bistatic configurations is developed. For any uncorrelated process, the resulting equation can be expressed in terms of the monostatic statistical shadowing function with single reflection, derived in the preceding companion paper. The effect of correlation between the surface slopes and heights for a Gaussian surface is studied to illuminate the range over which such correlations can be ignored. It is found that while the correlation between surface slopes and heights in the monostatic statistical shadowing function with single reflection can be ignored, when calculating the average shadowing function with double reflection the correlation between slopes and heights between points must be incorporated.  相似文献   

14.
王蕊  郭立新  麻军 《中国物理 B》2009,18(8):3422-3430
Electromagnetic wave scattering from multilayers consisting of two two-layer Gaussian rough surfaces with lossless media is investigated in the Kirchhoff approximation (KA), with consideration of the shadowing effects. The tapered incident wave is introduced into the classic KA, and the bistatic scattering coefficient is redetermined. The advantage of this method is that it is faster in computation than the exact numerical methods. The numerical results show that the bistatic scattering coefficient calculated in the KA is in good agreement with that obtained by using the method of moment (MOM) over a most angular range, which indicates the validity of the KA proposed in our paper. Finally, the effects of the relative permittivity, the root-mean-square (RMS) height, the correlative length, and the average height between the two interfaces on the bistatic scattering coefficient are discussed in detail.  相似文献   

15.
Abstract

The integral equation model (IEM) has been developed over the last decade and it has become one of the most widely used theoretical models for rough-surface scattering in microwave remote sensing. In the IEM model the shadowing function is typically either omitted or a form based on geometric optics with single reflection is used. In this paper, a shadowing function for one-dimensional rough surfaces which incorporates multiple scattering, finite surface length and both monostatic and bistatic configurations is developed. For any uncorrelated process, the resulting equation can be expressed in terms of the monostatic statistical shadowing function with single reflection, derived in the preceding companion paper. The effect of correlation between the surface slopes and heights for a Gaussian surface is studied to illuminate the range over which such correlations can be ignored. It is found that while the correlation between surface slopes and heights in the monostatic statistical shadowing function with single reflection can be ignored, when calculating the average shadowing function with double reflection the correlation between slopes and heights between points must be incorporated.  相似文献   

16.
Based on the Kirchhoff approximation for rough surface scattering and by calculating the shadowing function of the rough surface, the formula of the scattering cross section of the dielectric rough surface is presented with consideration of the shadowing effect for the optical wave incidence. It is obtained that in comparison with the conventional Kirchhoff solution, the shadowing effect should not be neglected for the optical wave scattering from the rough surface. The influence of the shadowing effect for different incidence angle, surface root mean square slope, and surface roughness on the scattering cross section is discussed in detail.  相似文献   

17.
Abstract

This paper is the third in a series discussing a new approximate bistatic model for electromagnetic scattering from perfectly conducting rough surfaces. Our previous approach supplemented the Kirchhoff model through the addition of new terms involving linear orders in slope and surface elevation differences that arise naturally from a second iteration of the surface current integral equation. This completion of the Kirchhoff was shown to provide the correct first-order small perturbation method (SPM-1) in the general bistatic context. The agreement with SPM-1 was achieved because differences of surface heights are no longer expanded in powers of surface slope. While consistent with SPM, our previous formulation fails to reconverge toward the Kirchhoff model, at some incidence and scattered angles, when the illuminated surface satisfies the high frequency roughness condition. This weakness is also shared with the first-order small slope approximation (SSA-1) which is structurally equivalent to our previous formulation where the polarization is independent of surface roughness. The second-order small slope approximation (SSA-2), which satisfies the SPM-1 and second-order small perturbation method (SPM-2) limits by construction, was shown by Voronovich to converge toward the tangent plane approximation of the Kirchhoff model under high frequency conditions. In the present paper, we show that, in addition to the linear orders in our previous model, one must now include cross-terms between slope and surface elevation to ensure convergence toward both high frequency and small perturbation limits. With the inclusion of these terms, our new formulation becomes comparable to the SSA-2 (second-order kernel) without the need to evaluate all the quadratic order slope and elevations terms. SSA-2 is more complete, however, in the sense that it guarantees convergence toward the second-order Bragg limit (SPM-2) in the fully dielectric case in addition to both SPM-1 and Kirchhoff. Our new generalization is shown to explain correctly extra depolarization in specular conditions to be caused by surface curvature and surface autocorrelation for incoherent and coherent scattering, respectively. This result will have large repercussions on the interpretation of bistatically reflected signals such as those from GPS.  相似文献   

18.
Two numerical methods to model light scattering from illuminated features on surfaces are presented. The discrete-dipole approximation (DDA) method is considered, as well as the modified double interaction method (MDIM). The DDA method models electromagnetic scattering of continuous features using discrete dipoles placed on a lattice structure. Sommerfeld integral terms are used to model dipole/surface interaction in the near-field. The MDIM method first computes scattering from the features based in free space using other methods such as Mie theory or other standard light scattering codes (including DDA). The surface interaction is modeled as a first approximation by means of a geometrical shadowing effect and the Fresnel coefficients. Comparisons of the methods will be shown for light scattering from spherical features. The material properties of dielectric and metallic materials will be considered and the feature sizes will be varied. The prediction accuracy and computational requirements of each method will be investigated. For most cases, the studies will show that the DDA method is more accurate than the MDIM method for dielectric materials since the modeling of the feature and surface electromagnetic interaction is more accurate; however, the modified double interaction method may be advantageous over the discrete-dipole approximation method for metallic features because of lesser computational times and memory requirements.  相似文献   

19.
This paper is the third in a series discussing a new approximate bistatic model for electromagnetic scattering from perfectly conducting rough surfaces. Our previous approach supplemented the Kirchhoff model through the addition of new terms involving linear orders in slope and surface elevation differences that arise naturally from a second iteration of the surface current integral equation. This completion of the Kirchhoff was shown to provide the correct first-order small perturbation method (SPM-1) in the general bistatic context. The agreement with SPM-1 was achieved because differences of surface heights are no longer expanded in powers of surface slope. While consistent with SPM, our previous formulation fails to reconverge toward the Kirchhoff model, at some incidence and scattered angles, when the illuminated surface satisfies the high frequency roughness condition. This weakness is also shared with the first-order small slope approximation (SSA-1) which is structurally equivalent to our previous formulation where the polarization is independent of surface roughness. The second-order small slope approximation (SSA-2), which satisfies the SPM-1 and second-order small perturbation method (SPM-2) limits by construction, was shown by Voronovich to converge toward the tangent plane approximation of the Kirchhoff model under high frequency conditions. In the present paper, we show that, in addition to the linear orders in our previous model, one must now include cross-terms between slope and surface elevation to ensure convergence toward both high frequency and small perturbation limits. With the inclusion of these terms, our new formulation becomes comparable to the SSA-2 (second-order kernel) without the need to evaluate all the quadratic order slope and elevations terms. SSA-2 is more complete, however, in the sense that it guarantees convergence toward the second-order Bragg limit (SPM-2) in the fully dielectric case in addition to both SPM-1 and Kirchhoff. Our new generalization is shown to explain correctly extra depolarization in specular conditions to be caused by surface curvature and surface autocorrelation for incoherent and coherent scattering, respectively. This result will have large repercussions on the interpretation of bistatically reflected signals such as those from GPS.  相似文献   

20.
The problems of wave diffraction on a rough surface is considered by reducing surface scattering to volume scattering and then using methods for study of multiple scattering developed in the theory of wave propagation in random-inhomogeneous media. Using this approach, the Dyson equation is solved in the Bourret approximation as is the Bethe-Salpeter equation in the ladder approximation for the correlation function of the scalar field scattered on an infinite ideally reflective statistically homogeneous surface. Solutions of these equations automatically consider shadowing of some portions of the surface by others.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 27, No. 1, pp. 65–70, January, 1984.The author is greatly indebted to A. B. Shmelev and A. G. Vinogradov for their valuable remarks and evaluation of the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号