首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Octahedral complexes of transition metal ions with d(2) and d(8) electron configurations have triplet electronic states with identical T(2g), A(2g), T(1g)((3)F), and T(1g)((3)P) symmetry labels. CASSCF and CASPT2 calculations indicate the predominant electronic configurations for each triplet state. The two (3)T(1g) states show strong configuration mixing in the d(8) complex [Ni(H(2)O)(6)](2+), but much weaker mixing occurs between these states in the d(2) compound [V(H(2)O)(6)](3+). Calculated vibrational frequencies and equilibrium geometries for the triplet states are used to obtain theoretical absorption spectra that are in agreement with the experimental data.  相似文献   

2.
Magnetic, vibrational, and optical techniques are combined with density functional calculations to elucidate the electronic structure of the diamagnetic mononuclear side-on CuII-superoxo complex. The electronic nature of its lowest singlet/triplet states and the ground-state diamagnetism are explored. The triplet state is found to involve the interaction between the Cu xy and the superoxide pi v * orbitals, which are orthogonal to each other. The singlet ground state involves the interaction between the Cu xy and the in-plane superoxide pi v * orbitals, which have a large overlap and thus strong bonding. The ground-state singlet/triplet states are therefore fundamentally different in orbital origin and not appropriately described by an exchange model. The ground-state singlet is highly delocalized with no spin polarization.  相似文献   

3.
Using single- and multireference approaches we have examined many of the low-lying electronic states of oxo-Mn(salen), several of which have not been explored previously. Large complete-active-space self-consistent-field (CASSCF) computations have been performed in pursuit of an accurate ordering for the lowest several electronic states. Basis set and relativistic effects have also been considered. For the geometry considered, our best results indicate the ground spin state to be a closed-shell singlet, followed by a pair of low-lying triplet states, with additional singlet states and the lowest quintet state lying significantly higher in energy. Hartree-Fock and density functional theory (DFT) results are obtained and are compared to the more robust CASSCF results. The Hartree-Fock results are qualitatively incorrect for the relative energies of the states considered. Popular density functionals such as BP86 and B3LYP are superior to Hartree-Fock for this problem, but they give inconsistent answers regarding the ordering of the lowest singlet and triplet states and they greatly underestimate the singlet-quintet gap. We obtained multiple Hartree-Fock and DFT solutions within a given spin multiplicity, and these solutions have been subjected to wave function stability analysis.  相似文献   

4.
The photophysical properties of closely-coupled, binuclear complexes formed by connecting two ruthenium(II) tris(2,2'-bipyridine) complexes via an alkynylene group differ significantly from those of the relevant mononuclear complex. In particular, the energy of the first triplet excited state is lowered relative to the parent complex, because of the presence of the alkynylene substituent, while the triplet lifetime is prolonged, in part, because of extended electron delocalization. We now report that the triplet lifetime is also affected by the nature of the spectator 2,2'-bipyridyl ligands. Thus, replacing the parent 2,2'-bipyridine ligands with the corresponding 4,4'-dinitro-substituted ligands serves to decrease the luminescence yield and lifetime. With the corresponding carboxylate ester, the luminescence yield and lifetime are increased. Perdeuteration of the parent 2,2'-bipyridine ligands also leads to a modest increase in the luminescence yield. Such observations are indicative of electronic coupling between the various metal-to-ligand, charge-transfer excited triplet states. Temperature dependence studies confirm that these excited states are closely spaced and thermally accessible at ambient temperature. For some of the binuclear complexes, the quantum yield for formation of the lowest-energy triplet state is significantly less than unity.  相似文献   

5.
Six new potential energy surfaces of four singlet states and two triplet states for the title oxygen molecule reaction along with the spin-orbit coupling among them have been constructed from the complete active space second-order perturbation theory with a 6-311+G(d) basis. Accurate integral cross sections are calculated with a full six-dimensional nonadiabatic time-dependent quantum wave packet method. The thermal rate constant based on the integral cross sections agrees well with the result of the experimental measurements, and the intersystem crossing effects are also discussed in this electronic energy-transfer process.  相似文献   

6.
利用半经验分子轨道理论AM1方法,研究了烯酮及取代烯酮与环戊二烯环加成反应机理。采用Berny梯度法优化得到各反应的过渡态和中间体,并进行了振动分析确认。计算结果表明,该环加成反应是按照协同的非同步途径进行的,经过一个四元环发生扭曲的过渡态,并有部分电荷从环戊二烯迁移到烯酮或取代烯酮上,前线轨道分析表明反应机理为“2×[1+1]”机理;而氯甲基取代的烯酮与环戊二烯的环加成反应是按照分步途径发生的。计算结果可以很好地说明实验所观察到的立体选择性,并根据烯酮上取代基的电子效应和位阻效应对反应机理的影响进行了分析。  相似文献   

7.
Polarization labeling spectroscopy technique was used to measure excitation spectra of LiCs molecule in the spectral range of 16,000-18,500 cm(-1). Four band systems were observed and assigned to transitions from the ground X(1)Σ(+) state to excited states (4)Ω = 0(+), (5)Ω = 0(+), (5)Ω = 1, and (6)Ω = 1 (in Hund's case (c) notation proper here), the latter three states being fine structure components of the states d(3)Π and e(3)Σ(+), nominally of triplet symmetry. The observed states are characterized spectroscopically and the experimental results are compared with predictions of theoretical calculations, showing accuracy of the theoretical electronic term values better than 100 cm(-1) and of the ω(e) and R(e) constants within 5%.  相似文献   

8.
Theoretical studies on the electronic and thermodynamic properties of several electronic states of CeC(2) and CeC(2)(+) have been carried out employing state-of-the-art single- and multireference techniques. The ground and the low-lying electronic states of these two species have been found to possess C(2v) triangular structures. A (3)B(2) state has been found to be the ground state of CeC(2) while for CeC(2)(+) (2)A(2) is the ground state. The computed electron ionization energy is in excellent agreement with experiment. The experimentally observed thermodynamic properties (dissociation and atomization energies) of reactions involving CeC(2) dissociation are corrected using the computed gas-phase properties of the molecule and the partition functions. The bent triplet and singlet state of CeC(2) exhibit large dipole moments (7.0-10.5 D) and it is consistent with the ionic character (through dative charge transfer) of the cluster in ground and excited states.  相似文献   

9.
Three new photoproducts, ethyl O-benzoyl mandelate (5a), ethyl O-acetylmandelate (6a), and biphenyl triketone (7a) are isolated and identified in the reactions of ethyl phenylglyoxylate (1a) in benzene. Quantum yields and initial rate constants of product formation are shown to be concentration dependent. For the formation of carbonyl product 3 at lower starting material concentrations (<0.01 M), quantum yields greater than 1 are observed. Variations in the quantum yields as a function of reaction time are due to the accumulation of alpha-hydroxyphenyl ketene (D). The relative reactivities of triplet excited states of phenylglyoxylates 1 and phenyl ketones are compared. A mechanism involving both intramolecular gamma-H abstraction and intermolecular H abstraction, which leads to radical chain reaction, is proposed. Rate constants for intramolecular gamma-H abstraction (k(N)) and intermolecular H abstraction (k(I)) of methyl phenylglyoxylate (1d) are measured.  相似文献   

10.
Published data on the properties of Müller's hydrocarbon are analyzed. The total energies of several hydrocarbon biradicals withp-phenylene bridges, including Thiele's, Chichibabin's, and Müller's hydrocarbons in the singlet and triplet states were calculated by the AM1 and PM3 semiempirical quantum-chemical methods. Contrary to popular opinion, our calculations revealed that the Müller's hydrocarbon molecule has a triplet rather than singlet ground state. The results obtained make it possible to explain the fact that quinoid color centers do not form in the course of reduction of poly(terphenylsulfophthalide). The calculated parameters of electronic spectra for singlet states of some related biradicals are reported.  相似文献   

11.
A series of newly synthesized Os(II) and Ag(I) complexes exhibit remarkable ratiometric changes of intensity for phosphorescence versus fluorescence that are excitation wavelength dependent. This phenomenon is in stark contrast to what is commonly observed in condensed phase photophysics. While the singlet to triplet intersystem crossing (ISC) for the titled complexes is anomalously slow, approaching several hundred picoseconds in the lowest electronic excited state (S(1) → T(1)), higher electronic excitation leads to a much accelerated rate of ISC (10(11)-10(12) s(-1)), which is competitive with internal conversion and/or vibrational relaxation, as commonly observed in heavy transition metal complexes. The mechanism is rationalized by negligible metal d orbital contribution in the S(1) state for the titled complexes. Conversely, significant ligand-to-metal charge transfer character in higher-lying excited states greatly enhances spin-orbit coupling and hence the ISC rate. The net result is to harvest high electronically excited energy toward triplet states, enhancing the phosphorescence.  相似文献   

12.
The role of mixed states in the collision-induced thermalization, intersystem crossing, and reactive loss of CH(2) (~a (1)A1) has been monitored using Doppler-resolved transient frequency modulation absorption spectroscopy. Singlet CH(2) is produced in a hot initial distribution of translation and rotational energy states in the 308 nm photodissociation of ketene in a large excess of argon. Collisions with Ar and ketene cool the translational and rotational degrees of freedom, while depleting the total singlet CH(2) population through reaction and intersystem crossing. Direct monitoring of the time-dependent populations of rotational levels containing mixed singlet and triplet character reveals a rapid interconversion between the two components, but no discernable difference between the kinetics of the pure singlet and mixed states at longer times.  相似文献   

13.
Calculations at the DFT level predict that benzyl anions with strong π-electron-withdrawing groups in the meta position(s) have low energy diradical or triplet electronic states. Specifically, the 2-(3,5-dinitrophenyl)-1,3-dithiane carbanion is predicted to have nearly degenerate singlet and triplet states at the (U)B3LYP level as a free anion. Its lithium ion pair is predicted to be a ground-state triplet with a substantial (26 kcal/mol) singlet-triplet energy gap. Experiments on this anion using chemical trapping, NMR, and the Evans method strongly suggest that this anion is either a triplet or a ground-state singlet with a very low energy triplet state.  相似文献   

14.
The valence electronic excited states of Fe2(CO)9 have been studied using the time-dependent density functional theory (TDDFT). Both tribridged D3h and monobridged C2v structures have been considered, and the structure of selected low-lying singlet and triplet excited states have been optimized on the basis of the TDDFT analytical gradient. Optimized excited-state geometries are used to obtain an insight into certain aspects of the Fe2(CO)9 photochemistry. The Fe2(CO)9 (D3h) first triplet and second singlet excited states are unbound with respect to dibridged Fe2(CO)8 + CO, and the first two monobridged Fe2(CO)9 (C2v) singlet states are unbound with respect to the Fe(CO)5 + Fe(CO)4 dissociation. These results are discussed in light of the experimental data available.  相似文献   

15.
Synthesis, absorption spectra and luminescebce properties of a series of lanthanide trisbipyridine cryptates Ln within R-Bpy x R-Bpy x R-Bpy, where Ln = Eu, Gd and R = H, COOH, COOCH3, CONH(CH2)2NH2 are described. Comparison of the unsubstituted parent compound with the substituted compounds shows that bipyridine substitution doesn't alter significantly the photophysical properties of the lanthanide cryptate. The absorption maximum is slightly red-shifted when three bipyridines are substituted, whereas substituting one bipyridines has a negligible effect on the absorption spectra. The experimental triplet state energy is between 21600 and 22 100 cm(-1) for the series of compounds and the luminescence lifetimes at 77 K are between 0.5 and 0.8 ms in HO2 and equal to 1.7 ms in D2O. The experimental characterizations are completed by DFT and TD-DFT calculations to assess the ability of these approaches to predict absorption maxima, triplet state energies and structural parameters of lanthanide cryptates and to characterize the electronic structure of the excited states. The calculations on the unsubstituted parent and substituted compounds show that absorption maxima and lowest 3pipi* triplet state energies can be accurately determined from density functional theory (DFT) and time-dependent (TD) DFT calculations.  相似文献   

16.
Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH2 with ketene CH2CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice–Ramsperger–Kassel–Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH3 and C2H4 + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C2H4 + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH2COCH2 intermediate or along the pathway of CO elimination from the initial CH2CH2CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C2H4 + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH3CHCO and cyclic CH2COCH2 intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300–3000 K, which are proposed for kinetic modeling of ketene reactions in combustion. © 2018 Wiley Periodicals, Inc.  相似文献   

17.
Absorption spectra of four nickel(II) complexes with poly(pyrazolyl)methane ligands are presented in the NIR-VIS-UV region and the band system corresponding to the lowest-energy spin-allowed and spin-forbidden transitions is analyzed. A quantitative theoretical model involving coupled electronic states provides precise energies for the lowest-energy triplet and singlet excited states and allows comparisons between complexes with a variable number of nitrogen and oxygen ligator atoms. Singlet energies between 12,840 and 13,000 cm(-1) are determined for heteroleptic complexes. These energies are in an intermediate range between those for homoleptic complexes with either nitrogen or oxygen ligator atoms with singlet states at approximately 12,000 and 14,000 cm(-1), respectively. The new theoretical approach is compared to the traditional ligand-field parameters obtained from the maxima of the broad, spin-allowed absorption bands.  相似文献   

18.
The ground and several electronic excited states of (3aS,7aS)-2-chalcogena-trans-hydrindans were calculated by the symmetry adapted cluster (SAC) and SAC-configuration interaction (SAC-CI) methods. Theoretical electronic excitation spectra and natural circular dichroism (CD) spectra were obtained for these compounds, and the calculated spectra showed good agreement with the experimental ones reported by Laur (Proceedings of the Third International Symposium on Organic Selenium and Tellurium compounds, Metz, France, 1979, pp. 219-299). For all the chalcogen compounds, the first singlet excited states are assigned to n-sigma* and the other states are assigned to n-Rydberg in our calculations. It indicates that the spectra for the sulfide, selenide, and telluride are almost regarded as the analogues except for the red shifts of the band positions from the sulfide to the telluride. For the telluride, however, the experimental spectra have shapes that cannot be interpreted by the singlet excitations solely. Our calculations predict the triplet states that account for the spectral shapes, indicating importance of the spin-orbit interaction effects for the accurate reproduction of the experimental spectra of the telluride.  相似文献   

19.
New spectroscopic absorption and luminescence data for the ions M(bpy)2+3 (M = Fe, Ru, Os) provide the basis for a theoretical model of the electronic structure of these ions. An important aspect of the model is the essential localization of the triplet states, in contrast to the singlet states which are delocalized. The model accounts very well for the new and existing spectroscopic data.  相似文献   

20.
Ab initio calculations have been performed on [FeII(bpy)3]2+ (bpy=bipyridine) to establish the variation of the energy of the electronic states relevant to light‐induced excited‐state spin trapping as a function of the Fe? ligand distance. Light‐induced spin crossover takes place after excitation into the singlet metal‐to‐ligand charge‐transfer (MLCT) band. We found that the corresponding electronic states have their energy minimum in the same region as the low‐spin (LS) state and that the energy dependence of the triplet MLCT states are nearly identical to the 1MLCT states. The high‐spin (HS) state is found to cross the MLCT band near the equilibrium geometry of the MLCT states. These findings give additional support to the hypothesis of a fast singlet–triplet interconversion in the MLCT manifold, followed by a 3MLCT–HS (5T2) conversion accompanied by an elongation of the Fe? N distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号