首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We developed a new method consisting of the proteomic reactor coupled with step pH fractionation for the analysis of low-abundance proteins from minute amount of sample. These new reactors were implemented using both SAX and SCX materials. The pH fractions from the SAX reactor provided higher peptide and protein identification than SCX reactor and conventional solution digestion. Interestingly, the physical characteristics (pI, molecular weight, missed cleavage site and grand average hydrophobicity (GRAVY) index, and number of acid and basic amino acid) of the peptides obtained from the SAX and SCX proteomic reactors are drastically different. Furthermore, nearly half of the peptides observed from the pH fractionations from the SAX reactor are of low abundance while only 22% low-abundance proteins are observed with conventional in-solution digestion following 2D LC-MS/MS analysis.  相似文献   

2.
Comprehensive proteomic analyses necessitate efficient separation of peptide mixtures for the subsequent identification of proteins by mass spectrometry (MS). However, digestion of proteins extracted from cells and tissues often yields complex peptide mixtures that confound direct comprehensive MS analysis. This study investigated a zwitterionic hydrophilic interaction liquid chromatography (ZIC‐HILIC) technique for the peptide separation step, which was verified by subsequent MS analysis. Human serum albumin (HSA) was the model protein used for this analysis. HSA was digested with trypsin and resolved by ZIC‐HILIC or conventional strong cation exchange (SCX) prior to MS analysis for peptide identification. Separation with ZIC‐HILIC significantly improved the identification of HSA peptides over SCX chromatography. Detailed analyses of the identified peptides revealed that the ZIC‐HILIC has better peptide fractionation ability. We further demonstrated that ZIC‐HILIC is useful for quantitatively surveying cell surface markers specifically expressed in undifferentiated embryonic stem cells. These results suggested the value of ZIC‐HILIC as a novel and efficient separation method for comprehensive and quantitative proteomic analyses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Luo Q  Gu Y  Wu SL  Rejtar T  Karger BL 《Electrophoresis》2008,29(8):1604-1611
This study expands the capabilities for ultratrace proteomic analysis of our previous work by incorporating on-line sample desalting using a triphasic (RP/strong cation exchange (SCX)/micro-SPE) trapping column connected to a 3.2 m x 10 microm id poly(styrene-divinylbenzene) (PS-DVB) porous layer open tubular (PLOT) column. To minimize extra sample handling steps, C18 RP packing was incorporated in the capillary tubing upstream of the SCX column for the on-line desalting. For the micro-SPE column, a 50 microm id PS-DVB monolithic column was positioned downstream of the SCX column. High-performance separation was achieved on the PLOT column at a mobile phase flow rate of 20 nL/min. The sensitivity and high resolution capability of the new multidimensional platform was evaluated using an in-gel tryptic digested sample of a cervical cancer (SiHa) cell line. For the injected amount of 1200 cells ( approximately 500 ng), over 2700 peptides covering greater than 850 unique proteins were identified from the triphasic SCX/PLOT/MS analysis of a single SDS gel section (>40 kDa). The 2-D LC/MS platform demonstrated good separation performance, such that more than 85% of the identified peptides were detected from only one salt fraction. In a triplicate analysis of the above >40 kDa gel section, 4497 peptides and 1209 unique proteins were identified when applying stringent filtering criteria, with a false-positive rate of 2.4%. When all three SDS-PAGE gel sections of the lysed SiHa cells were analyzed, 5047 peptides and 1857 unique proteins (false-positive rate 1.8%), including cancer-related proteins such as MAP kinases, were identified.  相似文献   

4.
In this study, two mixed‐mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two‐dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed‐mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed‐mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off‐line 2D‐LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine—Uncaria rhynchophylla. The two‐dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed‐mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications.  相似文献   

5.
The development of novel proteomic technologies that will enable the discovery of disease specific biomarkers is essential in the clinical setting to facilitate early diagnosis and increase survivability rates. We are reporting a shotgun two-dimensional (2D) strong cationic exchange/reversed-phase liquid chromatography/electrospray ionization tandem mass spectrometry (SCX/RPLC/ESI-MS/MS) protocol for the analysis of proteomic constituents in cancerous cells. The MCF7 breast cancer cell line was chosen as a model system. A series of optimization steps were performed to improve the LC/MS experimental setup, sample preparation, data acquisition and database search protocols, and a data filtering strategy was developed to enable confident identification of a large number of proteins and potential biomarkers. This research has resulted in the identification of >2000 proteins using multiple filtering and p-value sorting. Approximately 1600-1900 proteins had p < 0.001, and, of these, approximately 60% were matched by >or=2 unique peptides. Alternatively, >99% of the proteins identified by >or=2 unique peptides had p < 0.001. When searching the data against a reversed database of proteins, the rate of false positive identifications was 0.1% at the peptide level and 0.4% at the protein level. The typical reproducibility in detecting overlapping proteins across replicate runs exceeded 90% for proteins matched by >or=2 unique peptides. According to their biological function, approximately 200 proteins were involved in cancer-relevant cellular processes, and over 25 proteins were previously described in the literature as putative cancer biomarkers, as they were found to be differentially expressed between normal and cancerous cell states. Among these, biomarkers such PCNA, cathepsin D, E-cadherin, 14-3-3-sigma, antigen Ki-67, TP53RK, and calreticulin were identified. These data were generated by subjecting to MS analysis approximately 42 microg of sample, analyzing 16 SCX peptide fractions, and interpreting approximately 55,000 MS2 spectra. Total MS time required for analysis was 40 h.  相似文献   

6.
Ultrafine carbon black (ufCB) is a potential hazard to the lung. It causes changes in protein expression and it increases alveolar-capillary permeability in the lung. Label-free quantitative proteomic methods allow a sensitive and accurate analytical method for identifying and quantifying proteins in a protein mixture without chemically modifying the proteins. We used a label-free quantitative proteomic approach that combined and aligned LC-MS and LC-MS/MS spectra to analyze mouse bronchoalveolar lavage fluid (BALF) protein changes associated with exposure to ufCB. We developed a simple normalization method for quantification without spiking the internal standard. The intensities of unchanged peptides were used as normalization factors based on a statistical method to avoid the influence of peptides changed because of ufCB. LC-MS/MS spectra and then database searching were used to identify proteins. The relative abundances of the aligned peptides of identified proteins were determined using LC-MS spectra. We identified 132 proteins, of which 77 are reported for the first time. In addition, the expression of 15 inflammatory proteins and surfactant-associated proteins was regulated (i.e., 7 upregulated and 8 downregulated) compared with the controls. Several proteins not previously reported provide complementary information on the proteins present in mouse BALF, and they are potential biomarkers for the understanding of mechanisms involved in ufCB-induced lung disorders hypothesize that using the label-free quantitative proteomic approach introduced here is well suited for more rigorous, large-scale quantitative analysis of biological samples. We hypothesize that this label-free quantitative proteomic approach will be suited for a large-scale quantitative analysis of biological samples.  相似文献   

7.
Wu F  Sun D  Wang N  Gong Y  Li L 《Analytica chimica acta》2011,698(1-2):36-43
Three surfactant-assisted shotgun methods using acid labile surfactants, sodium-3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)-methoxyl]-1-propanesulfonate (RapiGest) and 3-[3-(1,1-bisalkyloxyethyl)pyridin-1-yl]propane-1-sulfonate (PPS), and sodium dodecyl sulfate (SDS) were investigated for their applicability to membrane proteome analysis. It is shown that RapiGest is a preferred reagent for handling membrane proteomes of Escherichia coli and MCF7 cells for liquid chromatography tandem mass spectrometry (LC MS/MS) analysis of tryptic digests. The RapiGest method allowed identification of more peptides and proteins than the SDS and PPS methods and there was no apparent bias for the type of peptides and proteins identified by the RapiGest and SDS methods, while a slightly higher proportion of hydrophilic peptides and proteins were identified by the PPS method. The performance of the SDS and PPS methods is similar in terms of the numbers of peptides and proteins identified. Since the SDS method required the removal of SDS using a technique such as strong-cation exchange (SCX), we further investigated the effect of SCX on sample loss through analyzing the digest of an enriched E. coli membrane fraction as well as a standard protein, bovine serum albumin (BSA). The results showed that extensive sample loss (as much as 62%) was encountered during the SCX cleaning step. We then applied the RapiGest method in combination with two-dimensional LC MS/MS to characterize the E. coli membrane proteome. In total, 1626 unique proteins (5799 unique peptides) were identified with a peptide false discovery rate of 2.4%. About 60% of the identified proteins with known cellular locations were found to be membrane proteins. Among them, about 75% were integral membrane proteins. This work represents one of the most comprehensive profiles of E. coli membrane proteome generated by a proteomic technique.  相似文献   

8.
The chromatographic behavior of a kind of nucleoside peptides, polyoxins, was investigated in this study. Molecular simulation technique was used to elucidate the temperature‐dependent peak sharpening of polyoxins. There was a relatively small energy barrier between the global minimum conformer and the local minimum conformer of polyoxin A and the high temperature helped to quickly cross the energy barrier and accelerate the conformational transformation for getting the global minimum, so that stationary phase could not identify these two conformations and presented a sharp peak. Two kinds of mixed‐mode columns, strong cation exchange or strong anion exchange ligands bonded with C18 (C18SCX and C18SAX) were used to improve separation selectivity of four polyoxins (A, K, F, H). The electrostatic attraction was necessary to increase the retention to ensure that the alkyl chain can give better play to its hydrophobic effect. Therefore, four polyoxins were well separated on C18SCX at pH 2 and they were also well separated on C18SAX at pH 7. In the small‐scale purification of polyoxins, the sample loading of the C18SCX was five times than that of the C18SAX and the purity of the collected four polyoxins was all over 90%.  相似文献   

9.
We have developed an on-line strong cation exchange (SCX)-ESI-MS/MS platform for the rapid identification of proteins contained in mixtures. This platform consists of a SCX precolumn followed by a nanoflow SCX column on-line with an electrospray ion trap mass spectrometer. We also used this platform to study the dynamics of peptide separation/extraction by SCX, in particular to understand the parameters affecting the performance of SCX in multidimensional chromatography. For example, we have demonstrated that the buffer typically used for tryptic digestion of protein mixtures can have a detrimental effect on the chromatographic behaviour of peptides during SCX separations, thereby affecting certain peptide quantitation approaches that rely on reproducible peptide fractionation. We have also demonstrated that band broadening results when a step (discontinuous) gradient approach is used to displace peptides from the SCX precolumn, reducing the separation power of SCX in multidimensional chromatography. In contrast, excellent chromatographic peak shapes are observed when a defined (continuous) gradient is used. Finally, using a tryptic digest of a protein extract derived from human K562 cells, we observed that larger molecular weight peptides are identified using this on-line SCX approach compared to the more conventional reverse phase (RP) LC/MS approach. Both methods used in tandem complement each other and can lead to a greater number of peptide identifications from a given sample.  相似文献   

10.
离线2D-LC-MS系统的建立及其用于人肝蛋白质组学的研究   总被引:2,自引:0,他引:2  
在蛋白质组学研究中,近年来提出的多维色谱-质谱联用技术有望成为继2D-PAGE-MS技术之后又一项重要的高通量技术平台,Yates,Davis,Wagner和Hancock等报道了二维强阳离子交换色谱-反相色谱-质谱(SCX-RPLC-MS)的在线联用分析系统,在该系统中,各维色谱的分离条件相互制约,只能从整体上加以平衡。  相似文献   

11.
In this work, a new method was developed for the determination of melamine (MEL) in animal feed. The method was based on the on-line coupling of dynamic microwave-assisted extraction (DMAE) to strong cation-exchange (SCX) resin clean-up. The MEL was first extracted by 90% acidified methanol aqueous solution (v/v, pH = 3) under the action of microwave energy, and then the extract was cooled and passed through the SCX resin. Thus, the protonated MEL was retained on the resin through ion exchange interaction and the sample matrixes were washed out. Some obvious benefits were achieved, such as acceleration of analytical process, together with reduction in manual handling, risk of contamination, loss of analyte, and sample consumption. Finally, the analyte was separated by a liquid chromatograph with a SCX analytical column, and then identified and quantitatived by a tandem mass spectrometry with positive ionization mode and multiple-reaction monitoring. The DMAE parameters were optimized by the Box–Behnken design. The linearity of quantification obtained by analyzing matrix-matched standards is in the range of 50–5,000 ng g−1. The limit of detection and limit of quantification obtained are 12.3 and 41.0 ng g−1, respectively. The mean intra- and inter-day precisions expressed as relative standard deviations with three fortified levels (50, 250, and 500 ng g−1) are 5.1% and 7.3%, respectively, and the recoveries of MEL are in the range of 76.1–93.5%. The proposed method was successfully applied to determine MEL in different animal feeds obtained from the local market. MEL was detectable with the contents of 279, 136, and 742 ng g−1 in three samples.   相似文献   

12.
Steiner F  Scherer B 《Electrophoresis》2005,26(10):1996-2004
Peptide separations are regarded as a promising application of capillary electrochromatography (CEC) and, at the same time, a suitable model to elucidate its mixed separation mechanism when charged analytes are involved. In this paper, studies on the separation of small peptides (2-4 amino acids) on a Spherisorb octadecyl silane (ODS) phase at acidic pH and on a strong anion exchange (SAX)/C18 mixed mode phase at weakly basic pH are reported. For the ODS phase a comparison of CEC, capillary zone electrophoresis (CZE) and high-performance liquid chromatography (HPLC) under identical buffer/eluent conditions is presented. The predicted retention factors for CEC under the assumption of simple superposition of HPLC retention and CZE migration matched the measured results for the peptides that had small retention factors in HPLC. For both types of stationary phases, a variation of the acetonitrile content in the mobile phase led to a wide range of retention factors, including negative values when co-electroosmotic migration was dominant. Though both the ODS and the SAX/C18 phase offer unique advantages, the SCX/C18 phase at pH 9 provides more flexibility to alter separation selectivity for the selected peptides.  相似文献   

13.
Solid phase extraction (SPE) methods based on multiple extractions have been developed to overcome matrix interferences in the charge-based fractionation analysis of As, Cr, Mo, Sb, Se and V leached from cement-based materials. Disposable SPE tubes packed with 500 mg strong anion-exchange (SAX) or strong cation-exchange (SCX) sorbents were used to extract the anionic and cationic species of the elements, respectively. The multiple extractions were based on the percolation of a small sample volume (5.0 mL) through a series of identical ion-exchange tubes. For most of the elements, more than 90% of the anionic species were extracted from a sample containing up to 16 g L−1 NO3 by passing the aliquot through five identical SAX tubes. Percolating a sample aliquot through three identical SCX cartridges gave more than 99% retention for Cr(III) from leachates containing a high concentration of interfering metal cations. The anionic and cationic analytes showed only slight non-specific adsorption on the SCX and SAX sorbents, respectively, except for V(V) on the SCX sorbent. A condition was established for the quantitative elution of the retained analytes from the ion-exchange sorbents with 1.0 mol L−1 HNO3. The multiple ion-exchange SPE procedures were validated using spike recovery tests. The methods were used to determine the anionic and cationic fractions of the target elements in concrete leachates covering a broad range of pH (3.8-13.4). The elements were found to exist predominantly as anions in the alkaline and neutral leachates. A high fraction (85%) of cationic Cr was detected in the most acidic leachate (pH 3.8).  相似文献   

14.
The aim of this work was the determination of peptides, which can function as markers for identification of milk allergens in food samples. Emphasis was placed on two casein proteins (α- and β-casein) and two whey proteins (α-lactalbumin and β-lactoglobulin). In silico tryptic digestion provided preliminary information about the expected peptides. After tryptic digestion of four milk allergens, the analytical data obtained by combination of reversed-phase high performance liquid chromatography and quadrupole tandem mass spectrometry (LC-MS/MS) led to the identification of 26 peptides. Seven of these peptides were synthesized and used for calibration of the LC-MS/MS system. Species specificity of the selected peptides was sought by BLAST search. Among the selected peptides, only LIVTQTMK from β-lactoglobulin (m/z 467.6, charge 2+) was found to be cow milk specific and could function as a marker. Two other peptides, FFVAPFPEVFGK from α-casein (m/z 693.3, charge 2+) and GPFPIIV from β-casein (m/z 742.5, charge 1+), occur in water buffalo milk too. The other four peptides appear in the milk of other species also and can be used as markers for ruminant species milk. Using these seven peptides, a multianalyte MS-based method was developed. For the establishment of the method, it was applied at first to different dairy samples, and then to chocolate and blank samples, and the peptides could be determined down to 1 ng/mL in food samples. At the end, spiked samples were measured, where the target peptides could be detected with a high recovery (over 50%).  相似文献   

15.
In this study, we report a combined proteomic and peptidomic analysis of human plasma from patients with rheumatoid arthritis (RA) and controls. We used molecular weight cut-off filters (MWCO: 10 kDa) to enrich low-molecular-weight (LMW) peptides from human plasma. The peptide fraction was analyzed without trypsin digestion by capillary reversed-phase high-performance liquid chromatography (HPLC) coupled to a linear ion trap–FT-MS system, which identified 771 unique peptides in the peptidome study (from 145 protein progenitors). An anti-albumin/anti-IgG column was used to remove albumin and immunoglobulin G (IgG) from the human plasma. After that, the albumin/IgG-depleted sample was fractionated into a bound fraction and an unbound fraction on a multi-lectin affinity column (M-LAC). LC–MS analysis of the corresponding tryptic digests identified 308 proteins using the M-LAC approach. Relative differences in the following protein classifications were observed in the RA human plasma samples compared with controls: structural proteins, immuno-related proteins, protease inhibitors, coagulation proteins, transport proteins and apolipoproteins. While some of these proteins/peptides have been previously reported to be associated with RA disease such as calgranulin A, B, C and C-reactive protein, several others were newly identified (such as thymosin β4, actin, tubulin, and vimentin), which may further the understanding of the disease pathogenesis. Moreover, we have found that the peptidomic and glycoproteomic approaches were complementary and allow a more complete picture of the human plasma proteome which can be valuable in studies of disease etiology.  相似文献   

16.
As the serum peptidome gets increasing attention for biomarker discovery, one of the important issues is how to efficiently extract the peptides from highly complex human serum for peptidome analysis. Here we developed a fully automated platform for direct injection, on-line extraction, multidimensional separation and MS detection of peptides present in human serum. A capillary SPE column packed with a novel mix mode restricted access material (RAM) exhibiting strong cation exchange and size exclusion chromatography (SCX/SEC) properties were coupled with a nanoliquid chromatography–mass spectrometry (nanoLC-MS) system. The capillary SPE column excludes the high abundant serum proteins such as HSA by size exclusion chromatography and simultaneously extracts the low molecular weight peptides by binding to sulfonic acid residues. Subsequently, the trapped peptides are eluted to a capillary LC column packed with a RP-C18 stationary phase. After injection of only 2 μL human serum to the one-dimensional nanoLC-MS system around 400 peptides could be identified. When conducting a multidimensional separation, the described SCX/SEC/RP-MS platform allows the separation and identification of 1286 peptides present in human serum by the injection and on-line processing of 20 μL human serum sample.  相似文献   

17.
张政  唐涛  杨三东  孙元社  李彤  张维冰 《色谱》2017,35(5):526-532
基于蛋白质的尺寸及带电性质,将凝胶过滤色谱(GFC)与离子交换色谱(IEC)两种分离模式结合,采用双捕集柱接口构建了GFC/2×IEC二维液相色谱(2-D LC)分离系统,同时考虑离子交换色谱分离蛋白质对等电点范围的限制,进一步结合中心切割平行柱的方法实现对蛋白质的全二维分离。为与后续蛋白质在线酶解、多肽分离及质谱鉴定匹配,系统中采用常规柱以保证蛋白质质谱鉴定对样品量的要求,3种常规分离柱分别选用凝胶过滤色谱柱TSK-GEL G3000SW_(XL)(300 mm×7.8 mm,5μm)、强阴离子交换色谱柱Hypersil SAX(100 mm×4.6 mm,10μm)和强阳离子交换色谱柱Hypersil SCX(100 mm×4.6 mm,10μm)。最终以酵母细胞蛋白质提取液为样品,对构建的二维系统加以评价,在总蛋白质浓度13.5 mg/mL、上样体积100μL的条件下,将第一维分离等时间切割17次,并将切割馏分全部导入第二维继续分离,二维系统在148 min内获得的总峰容量达到884。说明所构建的系统可以用于蛋白质的在线全二维分离。  相似文献   

18.
Quantitative mass spectrometry-based proteomic assays often suffer from a lack of robustness and reproducibility. We here describe a targeted mass spectrometric data acquisition strategy for affinity enriched subproteomes—in our case the kinome—that enables a substantially improved reproducibility of detection, and improved quantification via isobaric tags. Inclusion mass lists containing m/z, charge state, and retention time were created based on a set of 80 shotgun-type experiments performed under identical experimental conditions. For each target protein, peptides were selected according to their frequency of observation and isobaric tag for relative and absolute quantitation (iTRAQ) reporter ion quality. Retention times of selected peptides were aligned using similarity driven pairwise alignment strategy yielding <1 min standard deviation for 4 h gradients. Multiple fragmentation of the same peptides resulted in better statistics and more precise reporter ion based quantification without any loss in coverage. Overall, 24% more target proteins were quantified using the targeted data acquisition approach, and precision of quantification improved by >1.5-fold. We also show that a combination of higher energy collisional dissociation (HCD) with collisional induced dissociation (CID) outperformed pulsed-Q-dissociation (PQD) on the OrbitrapXL. With the CID/ HCD based targeted data acquisition approach 10% more quantifiable target proteins were identified and a 2-fold increase in quantification precision was achieved. We have observed excellent reproducibility between different instruments, underlining the robustness of the approach.  相似文献   

19.
A two-dimensional capillary array liquid chromatography system coupled with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) was developed for high-throughput comprehensive proteomic analysis, in which one strong cation-exchange (SCX) capillary chromatographic column was used as the first separation dimension and 10 parallel reversed-phase liquid chromatographic (RPLC) capillary columns were used as the second separation dimension. A novel multi-channel interface was designed and fabricated for on-line coupling of the SCX to RPLC column array system. Besides the high resolution based on the combination of SCX and RPLC separation, the developed new system provided the most rapid two-dimensional liquid chromatography (2D-LC) separation. Ten three-way micro-splitter valves used as stop-and-flow switches in transferring SCX fractions onto RPLC columns. In addition, the three-way valves also acted as mixing chambers of RPLC effluent with matrix. The system enables on-line mixing of the LC array effluents with matrix solution during the elution and directly depositing the analyte/matrix mixtures on MALDI plates from the tenplexed channels in parallel through an array of capillary tips. With the novel system, thousands of peptides were well separated and deposited on MALDI plates only in 150min for a complex proteome sample. Compared with common 2D-LC system, the parallel 2D-LC system showed about 10-times faster analytical procedure. In combination with a high throughput tandem time of flight mass spectrometry, the system was proven to be very effective for proteome analysis by analyzing a complicated sample, soluble proteins extracted from a liver cancer tissue, in which over 1202 proteins were identified.  相似文献   

20.
To support in vivo screening efforts for estrogen receptor (ER) subtype selective therapeutic agents, we initiated work to discover surrogate markers (biomarkers) in blood plasma that would change in response to ER subtype-specific action. We used a proteomic approach employing strong anion exchange chromatography (SAX), PAGE, and MS to identify potential plasma markers for selective ER-alpha action. The methodology was used to compare blood from vehicle-treated rats to blood from rats treated with either 17beta-estradiol (an ER-alpha/ER-beta agonist) or compound 1 (17alpha-ethynyl-[3,2-c]pyrazolo-19-nor-4-androstene-17beta-ol, an ER-alpha-selective agonist). Blood samples were first fractionated by SAX to separate fractions containing dominant common plasma proteins from fractions enriched for less-abundant plasma proteins. 1-D PAGE analysis of fractions depleted of dominant plasma proteins revealed treatment-specific changes in protein profiles. Protein bands that changed reproducibly in response to ER-alpha action were excised from the gel, separated by capillary LC, and identified by microspray ESI-MS. Using this method, the plasma levels of two proteins, transthyretin and apolipoprotein E, were shown to decrease in response to ER-alpha agonism. The method lacked the sensitivity to identify the known, 1000-fold less-abundant, estrogenic marker prolactin (PRL). However, using a commercial RIA and immunoblots, we showed that PRL levels increase significantly in response to treatment with the ER-alpha selective agonist, compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号