首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Hamam 《Optics Communications》1998,150(1-6):270-276
We present a dynamic free space interconnection network for single mode fibers. The architecture consists of a two-way imaging geometry involving only one single mode fiber array. Input and output fibers belong to the same fiber array. Programmable and fixed diffractive optical elements are used for beam steering and wavefront correction. We show that the network ensures favorable conditions for launching and allows for a high interconnection volume with minimal insertion losses at 2.5 Gb/s. The architecture is also adapted to the use of binary electrically addressed spatial light modulators.  相似文献   

2.
Battula A  Chen S  Lu Y  Knize RJ  Reinhardt K 《Optics letters》2007,32(18):2692-2694
The transmission of light through a thin Ag film with a periodic subwavelength hole array can be influenced by the presence of the externally applied magnetic field H. Using a three-dimensional finite element method, we show that the spectral locations of the transmission peak resonances can be shifted by varying the magnitude and direction of the H. The transmission peaks have blueshift, and the higher the magnitude of H the larger the blueshift. The shift is due to the change of cavity resonance condition as a result of the magneto-induced anisotropy in the optical properties of the Ag film. Hence, high transmittance for any desired wavelength can be achieved by applying an appropriate H to the metallic film of optimized material and hole parameters.  相似文献   

3.
A surface-wave sensor based on the resonant transmission characteristics of metal hole arrays is demonstrated in the terahertz (THz) region. Since the frequency of the transmission peak of a metal hole array, which corresponds to the resonant frequency of the surface waves, is particularly sensitive to the refractive index in the vicinity of the metal surface, a very small change in the substances attached to the surface can be detected by monitoring the transmission spectrum. By attaching a layer of substance (thickness t < 5 microm) much thinner than the wavelength of the THz wave (lambda(THz) = 1 mm at 0.3 THz) to the surface of a metal hole array, we demonstrated that the existence of such a small amount of substance can be detected more easily than without the metal hole array. This demonstration of THz sensing with metal hole arrays indicates the possibility of realizing THz surface-wave sensors for biochemical molecules in the THz region.  相似文献   

4.
We present measurements of the wavelength-dependent reflectivity of a subwavelength metal hole array on a glass substrate. We compare the observed resonant structures with those found in transmission and note a nonreciprocity under illumination from the air versus the glass side. This can be used to verify on which interface the surface plasmons are resonantly excited and to estimate the losses in the subwavelength channels.  相似文献   

5.
This paper introduces the development of a double-sided micro lens array (DSMLA) for application in micro laser projectors. For commercial mass production, it is necessary to investigate the concurrent engineering of optical design, mold fabrication, and plastic injection molding at once. This experiment based the design of the micro lens array on the scalar diffraction theory. The proposed DSMLA can simultaneously shape red, green, and blue laser beams into a uniform projection pattern. An ultra precision diamond turning machine using a slow tool servo method fabricated the mold. The study considered optical design constraints from the feedback of mold fabrication and plastic injection molding, measuring and comparing fabricated samples with calculated results. Experimental results show that the fabricated DSMLAs achieve the desired function and application feasibility for micro laser projectors.  相似文献   

6.
A method that uses radio frequency (RF) spectroscopy to evaluate the alignment of an optical lattice is proposed and demonstrated. A one-dimensional (1D) optical lattice is applied along the long axis of a cigar-shaped Bose-Einstein condensate (BEC) in a magnetic trap. The RF spectra of condensates with and without the optical lattice are analyzed, measured, and compared with the condition in which the lattice is misaligned with the BEC. The proposed method greatly optimizes the optical alignments of the lattices.  相似文献   

7.
It is shown that, depending on the incident wave frequency and the system geometry, the extraordinary transmission of light through a metal film perforated by an array of subwavelength holes can be described by one of the three mechanisms: the “transparency window” in the metal, excitation of the Fabry–Perot resonance of a collective mode produced by the hybridization of evanescence modes of the holes and surface plasmons, and excitation of a plasmon on the rear boundary of the film. The excitation of a plasmon resonance on the front boundary of the metal film does not make any substantial contribution to the transmission coefficient, although introduces a contribution to the reflection coefficient.  相似文献   

8.
Pringe array is proposed as the cooperated target in the precise torsion angle detection. The target fringe array image is generated according to the structure of the optical system, and the torsion angle detection algorithm is analyzed in response to the gray distribution of the image. The factors affecting the detection precision of the fringe torsion angle are analyzed theoretically and numerically. It indicates that the detection precision of the torsion angle is 1 angular second or even less, carefully selecting the detector array. Significantly, experiments are performed to demonstrate the precision and the results match well with the simulations.  相似文献   

9.
Chen Y  Zhou C  Luo X  Du C 《Optics letters》2008,33(7):753-755
A method is proposed to modulate phase using variant square holes in a metallic film based on a fundamental mode approximation model. Phase retardation through square holes in a subwavelength scale in a thin metal film has been analyzed and calculated. Based on the model, a structured lens with a numerical aperture of 0.583 and a focal length of 240 microm formed by a 2D square hole array in a metallic film is designed. Numerical simulation using the finite-difference time-domain method is carried out, and the results agree with the theoretical analysis. A focal spot close to the diffraction limit can be obtained.  相似文献   

10.
The classical Kirchhoff theory of diffraction is extended to the case of real optical properties of a screen and its finite thickness. A spectral power density of diffracted electromagnetic fields by a hole in a thin film with real optical properties was calculated. The problem was solved by use of the vector Green theorems and related Green function of the boundary value problem. A spectral and spatial selectivity of the considered system was demonstrated. Diffracted patterns were calculated for the coherent and incoherent incident fields in case of holes array in a screen of perfect conductivity.  相似文献   

11.
Yong Fu  Fanmin Kong 《Optik》2010,121(3):259-262
The near- and far-field properties of a large-scale silver plate with a slit array are studied by applying the FDTD method. The far region scattering properties with different incident angles are also discussed. We find out that the silver plate with a suitable placed narrow slit array can excite the enhanced optical transmission (EOT) by the excitation of the surface plasmon polarition (SPP) and the Fabry-Perot resonance, and the cutoff angle is much larger than the ordinary LEDs. These unique properties suggest possible applications to the light-transparent metal contact.  相似文献   

12.
We present a new explanation of the extraordinary optical transmission through subwavelength hole array in metal films. By using the classical coupled-wave theory, we analyzed the coupling process between light and the surface plasmons wave on metal films with hole array. The analysis shows clearly the physical mechanism of extraordinary optical transmission. The calculation demonstrates that, instead of energy flux directly passing through the holes, the electromagnetic modes could exchange energy by overlapping the evanescent fields under the assistance of hole array. The periodicity of the array provides the momentum-matching condition to present the transmission peaks. The theory exhibits a good agreement with the experimental results reported in every detail.  相似文献   

13.
Frontiers of Physics - We consider the dynamics and formation of vortices from ring dark solitons in a two-dimensional Bose-Einstein condensate with the Rashba spin-orbit coupling based on the...  相似文献   

14.
This paper reports a novel uncooled infrared FPA whose performance is comparable to the cooled FPA’s in terms of noise parameters. FPA consists of bimaterial microcantilever structures that are designed to convert IR radiation energy into mechanical energy. Induced deflection by mechanical energy is detected by means of optical methods that measure sub nanometer thermally induced deflections. Analytical solutions are developed for calculating the figure of merits for the FPA. FEM simulations and the analytical solution agree well. Calculations show that for an FPA, NETD of < 5 mK is achievable in the 8–12 μm band. The design and optimization for the detectors are presented. The mechanical structure of pixels is designed such that it can be possible to form large array size FPA’s. Microfabrication of the devices to improve the performance further, employs low cost standard MEMS processes. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570O (2005).  相似文献   

15.
We propose a fundamental interconnection method using a polarization alignment system for waveguides having different spatial modes. In addition, as an example for the verification of the fundamental operation, we demonstrate an interconnection between a photonic crystal fiber and a laser that have obviously different spatial modes. The polarization alignment system operates synergistically with a self-written waveguide formed with a double phaseconjugate mirror. This technique enables us to interconnect a photonic crystal fiber with a laser source without complicated and time-consuming optical alignment. In this method, although it is not necessary to perform an external control for interconnection, the waveguide most suitable for connection is formed autonomously in a Sn2P2S6:Sb crystal developed for this purpose. There was a marked reduction in the polarization dependence of coupling efficiency, compared with that observed using a stand-alone double phase-conjugate mirror.  相似文献   

16.
Pressure-sensitive paint is presented and evaluated in this article as a quantitative technique for measurement of acoustic pressure fluctuations. This work is the culmination of advances in paint technology which enable unsteady measurements of fluctuations over 10 kHz at pressure levels as low as 125 dB. Pressure-sensitive paint may be thought of as a nano-scale array of optical microphones with a spatial resolution limited primarily by the resolution of the imaging device. Thus, pressure-sensitive paint is a powerful tool for making high-amplitude sound pressure measurements. In this work, the paint was used to record ensemble-averaged, time-resolved, quantitative measurements of two-dimensional mode shapes in an acoustic resonance cavity. A wall-mounted speaker generated nonlinear, standing acoustic waves in a rigid enclosure measuring 216 mm wide, 169 mm high, and 102 mm deep. The paint recorded the acoustic surface pressures of the (1,1,0) mode shape at approximately 1.3 kHz and a sound pressure level of 145.4 dB. Results from the paint are compared with data from a Kulite pressure transducer, and with linear acoustic theory. The paint may be used as a diagnostic technique for ultrasonic tests where high spatial resolution is essential, or in nonlinear acoustic applications such as shock tubes.  相似文献   

17.
Subwavelength optical imaging through a metallic nanorod array   总被引:1,自引:0,他引:1  
We propose a subwavelength imaging system without a lens or a mirror but with an array of metallic nanorods. The near-field components of dipole sources were plasmonically transferred through the rod array to reproduce the source distribution in the other side. We calculated the field distribution at the different planes of imaging process using the finite-difference time-domain algorithm and found that the spatial resolution was 40 nm given by the rod size and spacing. A typical configuration is a hexagonal arrangement of silver rods of 50 nm height and 20 nm diameter. We also show that the image formation highly depends on the coherence and the polarization of the source distribution and the source-array distance.  相似文献   

18.
Evanescent-wave photoacoustic spectroscopy with optical micro/nano fibers   总被引:1,自引:0,他引:1  
Y Cao  W Jin  LH Ho  Z Liu 《Optics letters》2012,37(2):214-216
We demonstrate gas detection based on evanescent-wave photoacoustic (PA) spectroscopy with tapered optical fibers. Evanescent-field instead of open-path absorption is exploited for PA generation, and a quartz tuning fork is used for PA detection. A tapered optical fiber with a diameter down to the wavelength scale demonstrates detection sensitivity similar to an open-path system but with the advantages of easier optical alignment, smaller insertion loss, and multiplexing capability.  相似文献   

19.
Optical devices for terahertz wave band from 0.1 to 10 THz are rapidly expanding and require better designs. This paper proposes and designs a parallel plate lens with metal hole array for the terahertz wave band. The fast wave effect is due to the parallel plate. For this lens, the parallel plate spacing and hole array dimensions control the phase velocity and the focusing effect. It is not necessary to control the phase through the lens shape, which is flat, itself. The periodic analysis model extracted from the full model confirms the phase control by the metal hole array dimensions. The periodic model can be used for efficient iterative design. The full wave analysis results are also obtained by ANSYS HFSS and the focusing effect is confirmed. Phase control using both the parallel plate and the hole array enhances the focusing effect over the focusing effect controlled only by the metal hole array dimensions.  相似文献   

20.
于潇  姚园  徐正平 《中国光学》2016,9(3):349-355
针对机载平台激光3D成像系统的轻小型需求,设计了采用APD阵列的共口径激光收发光学系统。在分析激光成像系统照明方式及其光学系统结构的基础上,给出了激光3D成像光学系统结构框图:激光经衍射元件实现分束照明,采用双工反射镜实现收发光路的耦合。该光学系统用于2 km以内的目标三维成像,根据激光测距方程,确定了接收光学系统的参数以获得满足信噪比的回波能量。为避免造成像素之间串扰,设计了5倍扩束比的发射光学系统。最后,采用偏振片与1/4波片相结合的方式消除杂光,降低了发射光路对接收光路的影响。设计结果表明:接收光学系统弥散斑直径小于120μm,畸变小于0.2%。该光学系统体积小、重量轻,成像质量良好,可为同类激光成像光学系统提供借鉴参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号