首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
Aroylphenylacetylenes (I) reacted with ethyl and phenyl hydrazinecarboxylates (II) to give ω-aroylacetophenone-N-ethoxycarbonyl-(Vla-f) and N-phenoxycarbonyl-(VIg-l) hydrazones, respectively. When these were healed with acetic anhydride they were converted to 5-aryl-1-ethoxycarbonyl-and 1-phenoxycarbonyl-3-phenylpyrazoles (VII), respectively, which on hydrolysis with rnethanolic potassium hydroxide gave the corresponding 5(3)aryl-3(5)phenylpyrazoles (VIII). Reaction of the above acetylenic ketones with guanidine hydrochloride in the presence of sodium carbonate gave the corresponding 2-amino-6-aryl-4-phenylpyrimidines (XII). Similarly, reaction of benzoylphenylacetylene with thiourea and with urea in the presence of sodium ethoxide gave rise to 2,4-diphenylpyrimidine-2-thione (XVIII) and 2,4-diphenyl-2(1H)pyrimidin-one (XV), respectively.  相似文献   

2.
In search of new antimicrobial agents with enhanced potency, we have designed and synthesized three series of hydrazones with 3‐methyl‐1‐phenyl‐1H‐thieno[2,3‐c ]pyrazole‐5‐carbohydrazide. All the synthesized compounds have been screened for their in vitro antibacterial and antifungal activities by employing broth microdilution method. It is observed that compounds are more susceptible to Vibrio cholerae than other tested strains. In particular, compounds ( 3a ), ( 3c ), ( 5g ), and ( 5 h ) are highly potent against bacterial strain V. cholerae . The results suggest that hydrazones bearing two core pyrazole scaffolds would be potent antimicrobial agents.  相似文献   

3.
The hydrazones of benzophenone, benzil, and acetophenone were allowed to react with acetoacetanilide to give azinoamides 18 , and the reaction of 18 with Appel's dehydrathon contiditons (triphenylphosphine/carbon tetra-chloride/triethylatnine) led to the corresponding azinoketimines 19 , which underwent elctrocyclic ring closure under the reaction conditions to give pyrazolo-fused heterocycles. Azinoamide 18a gave a 4,9-dihydropyazolo-[5,1-b]quinazoine 21 , while 18b yielded 2,3-dihydro-1H-imidazo[1,2-b]pyrazol-2-one 26 and 1H-imidazo[1,2-b]-pyrazole 29 . Compound 18c gave a monocyclic N-α-styryl-5-(phenylamino)pyrazole 32 .  相似文献   

4.
3-Chloro-2-phenyl-6-p-tolyl and 3-chloro-2,6-di-p-tolyl-4H-thiopyran-4-ones have been synthesized in moderate yieldes from the reaction of 3-chloro-tetrahydrothiopyran-4-ones with phosphorus pentachloride. Their thiones, oximes, and hydrazones have been also prepared. Treatment of thiones with malononitrile gave the corresponding 3-chloro-4-thiopyrylidenemalononitriles which gave 3-chloro-spirothiopyran derivatives of pyrazole, isoxazole, 1,3-thiazines when treated with hydrazine hydrate, hydroxylamine hydrochloride, thiourea and thiosemicarbazide, respectively. While treatment of 3-chloro-thiopyrylidene-malononitriles with acetylacetone gave the corresponding 3-chloro-spirothiopyran derivatives of pyran.  相似文献   

5.
Synthesis of pyrazoles via electrophilic cyclization of α,β-alkynic hydrazones by copper(I) iodide is described. When treated with copper(I) iodide in the presence of triethylamine in refluxing acetonitrile, α,β-alkynic hydrazones, prepared readily from hydrazines and propargyl aldehydes and ketones, undergo electrophilic cyclization to afford pyrazole derivatives in good to excellent yields. The reaction appears to be general for a variety of α,β-alkynic hydrazones and tolerates the presence of aliphatic, aromatic, and ferrocenyl moieties with electron-withdrawing and electron-donating substituents.  相似文献   

6.
Aroylphenylacetylenes reacted with ammonium dithiocarbamate and ammonium hydrogen sulfide in 60% dioxane-waler mixture at 15° to give mainly a mixture of the corresponding β-hydroxy-α-thiobenzoylstyrene derivatives (III) and (E,Z)-β,β'-di(α-aroylstyryl) sulfides (IV), whereas with sodium xanthate and sodium sulfide they gave only (III). However, when benzoyl-(Ia) or p-ehlorobenzoyl-(Id)phenylacetylenes was refluxed with ammonium dithiocarbamate in ethyl alcohol, it gave a mixture of (IIIa or d) and the (E,E)-β,β'-di(α-aroylstyryl) sulfide (VIa or d). β-Hydroxy-α-thiobenzoylstyrene derivatives (III), (E,Z)-(IV) and (E,E)-(VI)-β,β'-di(α-aroylstyryl) sulfides reacted with hydrazine hydrate and phenylhydrazine to give 3(5)-aryl-5(3)-phenyl-(IX)- and 5-aryl-1,3-diphenyl-(X)pyrazoles, respectively. The former compounds (III) reacted with guanidine and ethyl hydrazinecarboxylate to give the corresponding aminopyrimidines (XIII) and acetophenone-N-ethoxycarbonyl hydrazones (XI), respectively.  相似文献   

7.
The cyclisation of 4-acetyl-5(or 3)-chloropyrazole hydrazones into pyrazolo[3,4-c]pyrazoles does not proceed when the pyrazole is a N-methylated derivative or when the hydrazone is a phenylhydrazone. Instead of 1-azapentalene derivatives, a new pyrazolo[3,4-b]quinoline and several hydrazones and ketazines have been isolated.  相似文献   

8.
The reaction of 3‐(1,4‐dioxo‐3,4‐dihydrophthalazin‐2(1H)‐yl)‐3‐oxopropanenitrile 1 and salicyladehyde furnished coumarin derivatives 4 and 5 . Coupling reaction of 1 with aryl diazonium chlorides and benzene‐1,4‐bis (diazonium) chloride gave the corresponding hydrazones 6a , b and bishydrazone 9 , respectively. Hydrazones 6 underwent intramolecular cyclization upon treating with hydrazine hydrate to give 3‐aminopyrazoles 7 . Pyranyl phthalazine 13 was prepared from the reaction of 1 with ethyl 2‐cyano‐3‐ethoxyacrylate 10 . Enaminonitrile 14 was reacted with hydrazine hydrate/phenylhydrazine and hydroxylamine to afford the corresponding pyrazoles 16 and oxime 17 . The antimicrobial evaluation revealed pyrazole derivatives 7a , b and 16a , b displayed a broad spectrum activity against most strains. 3‐Aminopyrazole derivative 7b showed potent antibacterial activity against all tested microorganisms.  相似文献   

9.
The reaction of aroylphenylacetylenes (I) with acyl- or aroylhydrazines (II) gave ω-aroyl-acetophenone-N-acyl or N-aroylhydrazones (IV). The latter gave upon treatment with methanolic potassium hydroxide and with acetic anhydride in the presence of sodium acetate, the corresponding pyrazoles (V) and the N-acetylpyrazoles (VII and VIII), respectively. The acetylenic ketones ( 1 ) also reacted with methylhydrazine and 1,1-dimethylhydrazine to give 5-aryl-1-methyl-3-phenylpyrazoles (XII), and 1,1-dimethylhydrazine derivatives (XIII), respectively. When the latter compounds were heated with acetic anhydride, they gave the N-methylpyrazoles (XII).  相似文献   

10.
Aroylphenylacetylenes (I) reacted with thiourea and S-benzylisothiourea to give 4,6-diaryl-pyrimidine-2(1H)thiones (IV) and α-aroyl-β-benzylmercaptostyrenes (X), respectively. Methyla-tion and acetylation of the thiones (IV) gave the corresponding S-methyl- (V) and S-acetyl- (VI) derivatives, respectively. The oxidation of these thiones gave the corresponding disulfide derivatives (VII). Reaction of α-aroyl-β-benzylmercaptostyrenes (X) with hydrazine hydrate and phenylhydrazine gave 3(5)-aryl-5(3)-phenylpyrazoles (XI) and 3-aryl-1,5-diphenylpyrazoles (XIII), respectively. Reaction of aroylphenylacetylenes (1) with N-allylthiourea gave 1-allyl-4,6-diaryl-pyrimidine-2-thiones (XVI).  相似文献   

11.
3-Aryl-1-phenyl-2-propen-1-one I reacted with ethyl phenylacetate (II) in the presence sodium ethoxide at room temperature to give the corresponding ethyl β-aryl-γ-benzoyl-α-phenyl-butyrate III. However,' when the same ketones were refluxed with ethyl phenylacetate, they gave the corresponding 4-aryI-3,6-diphenyl-3,4-dihydro-2H-pyran-2-ones IV. The reactions of III and IV with hydrazine hydrate afforded the corresponding hydrazones VI and 2-pyridones VIII, respectively. The structure and configuration of the products are based on chemical and spectroscopic evidence.  相似文献   

12.
In an endeavor to find a new class of antimicrobial agents, a series of novel substituted benzimidazole, benzoxazole, and benzothiazole derivatives 6 containing pyrazole moiety have been synthesized by reaction of 3‐aryl‐4‐formyl pyrazole 4 with substituted phenylenediamine or o‐aminophenol or o‐aminothiophenol 5 . Reaction of phenyl hydrazine or 2‐hydrazinopyridine 1 with substituted acetophenones 2 gave the corresponding hydrazones 3 , which on Vilsmeier–Haack reaction with POCl3–DMF gave substituted 3‐aryl‐4‐formyl pyrazoles 4 . All final compounds 6a , 6b , 6c , 6d , 6e , 6f , 6g , 6h , 6i , 6j , 6k were evaluated for in vitro antibacterial activities against Escherichia coli and Staphylococcus aureus strains and in vitro antifungal activity against Candida albicans and Aspergillus niger strains by using serial dilution method. The antimicrobial activities were expressed as the minimum inhibitory concentration in µg/mL. The compound containing benzimidazole and benzoxazole moiety gave better antibacterial and antifungal activities than benzothiazole compounds.  相似文献   

13.
This paper describes the synthesis of 1-hydrazinopyridazino[4,5-b]quinoxaline ( 10 ), tetrazolo[4,3-b]pyridazino[4,5-b]quinoxaline ( 11 ) and some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 . Starting with 2-ethoxycarbonyl-3-methylquinoxaline 1,4-dioxide ( 1 ), 1,2-dihydro-1-oxopyridazino[4,5-b]quinoxaline ( 5 ) was prepared by three different ways: (a) chlorination of 1 in acetic acid gave 2-ethoxycarbonyl-3-dichloromethylquinoxaline 1,4-dioxide, which reacts with an excess of hydrazine to give about 60% of 5 ; (b) oxidation of 1 with selenium dioxide gave 90% of 2-ethoxycarbonyl-3-formylquinoxaline 1,4-dioxide ( 3 ), which reacts with hydrazine to give 5 (63%); (c) compound 3 was treated with hydrazine to give 1,2-dihydro-1-oxopyridazino-[4,5-b]quinoxaline 1,4-dioxide ( 4 ) (70%), which by reduction with sodium dithionite gave 5 (80%). Compound 5 reacts with phosphorus pentasulfide or the Lawesson reagent to give 1,2-dihydro-1-thiocarbonylpyridazino[4,5-b]quinoxaline ( 9 ), which treated with hydrazine gave 5 (80%). This last compound reacts with nitrous acid to give 11 . Some hydrazones 12 from 10 are described. Heating the aldehyde hydrazones 12a,c,d with dimethylsulfoxide some 1,2,4-triazolo[4,3-b]pyridazino[4,5-b]quinoxalines 13 were obtained. Compound 13a was also obtained in the reaction of 10 with benzoyl chloride. Reaction of 3 with phenylhydrazine gave 1,2-dihydro-1-oxo-2-phenylpyridazino[4,5-b]quinoxaline ( 6 ). Reactions of 5 with acetic anhydride and dimethylsulfate gave, respectively, 1-acetoxypyridazino[4,5-b]quinoxaline ( 8 ) and 1,2-dihydro-1-oxo-2-methylpyridazino-[4,5-b]quinoxaline ( 7 ). All the compounds were characterized by elemental analysis and 1H-nmr spectra. Compounds 5 and 10 showed antihypertensive activity in rats.  相似文献   

14.
Reaction of ethyl N-cyanoformimidate ( 3 ) and of ethyl N-carbelhoxyformimidate ( 5 ) with 3-aminopyrazole ( 2 ) gave 4-amino- and 4-oxo-3H-pyrazolo[1,5-a]-1,3,5-triazine ( 4 and 7 ), respectively. Reaction of 3-amino-4-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)pyrazole ( 8 ) with the same reagents similarly gave the blocked 4-amino-8-ribosyl- and 4-oxo-3H-8-ribosyl-pyrazolo[ 1,5-a]-1,3,5-triazine ( 9 and 15 ), respectively. Deblocking in acid finally afforded the unblocked products 10 (an isostere of adenosine and formycin) and 16 (an isostere of inosine and formycin B). The corresponding derivatives in the a series were made by identical procedures for confirming all structural assignments. Preliminary in vitro testing results of 10 are included.  相似文献   

15.
3-Acetyl-2-aminotropone ( 1a ) reacted with hydrazine to afford its hydrazone ( 3a ) and 3-methyl-1,8-dihydrocycloheptapyrazol-8-one ( 4 ), while methylamino- and pyrrolidinyl-substituted compounds 1b and 1c gave only the cyclized compound ( 4 ). Reactions of 2-acetyl-7-aminotropones 2a-d gave their hydrazones 5a-d and the hydrazone 6 . The hydrazones 3a and 5b were heated in acetic acid to give 4 and 3-methyl-8-methylamino-1,2-diazaazulene ( 7 ), respectively. Several reactions of 4 and 6 were also described.  相似文献   

16.
6-Cyanomethylene ( 2 ), which was prepared via 1 by substitution with malononitrile, has been catalytically hydrogenated to the α-(aminomethylene)-9-(methoxymethyl)-9H-purine-6-acetonitrile ( 3 ) in good yield using N,N-dimethylformamide-benzene as solvent over Pd-C under medium pressure. Intermediate 3 was derived to aldehyde 5 by hydrolysis with acid or base. Substitution of 3 with amines gave the corresponding alkylamines 6 and 7 . Reaction of 3 with hydrazine and acetamidine hydrochloride gave pyrazole derivative 8 and pyrimidine derivative 9 , respectively.  相似文献   

17.
A number of pyrazole ribonucleosides, structurally related to AICA riboside and ribavirin have been prepared and evaluated for their biological activity in vitro. Deisopropylidenation of 5-amino-1-(2,3-O-isopropylidene-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 6 ) with aqueous trifluoroacetic acid gave 5-amino-1-(β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 7 ). Conventional transformation of the carbonitrile function of 7 gave the AICA riboside congener ( 2 ) and related 5-amino-1-(β-D-ribofuranosyl)-pyrazoles ( 8–10 ). Acetylation of 7 at low temperature gave the versatile intermediate 5-amino-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 15 ). Non-aqueous diazotization of 15 with isoamylnitrite in dibromomethane or diiodomethane gave the corresponding C5-bromo 13 and C5-iodo 16 derivatives. Compounds 13 and 16 were subsequently transformed into 5-bromo-1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 11 ) and the 5-iodo analog 25 . However, a similar nonaqueous diazotization of 15 in dichloromethane afforded the deaminated product 1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)pyrazole-4-carbonitrile ( 22 ). Treatment of 22 with ammonium hydroxide/hydrogen peroxide gave the ribavirin congener 1-(β-D-ribofuranosyl)pyrazole-4-carboxamide ( 18 ). Similar treatment of 22 with hydrogen sulfide in pyridine or hydroxylamine in ethanol gave the 4-thiocarboxamide 19 and 4-carboxamidoxime 20 derivatives, respectively. Catalytic hydrogenation of 20 afforded 1[β-D-ribofuranosyl)pyrazole-4-carboxamidine ( 21 ). These pyrazole nucleosides are devoid of any significant antiviral or antitumor activity in vitro.  相似文献   

18.
Bromination of 3,5-dimethylpyrazole nucleosides with N-bromosuccinimide gave the corresponding 4-bromo-3,5-dimethylpyrazole, 3-methyl-5-(bromomethyl)pyrazole and 4-bromo-3-methyl-5-(bromomethyl)pyrazole nucleosides. Structural assignments were made on basis of analytical and 1 H nmr spectral data. All of the bromomethylpyrazole nucleosides described showed cytostatic activity against HeLa cell sultures.  相似文献   

19.
Reaction of 2-formyl-2-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)acetonitrile (VII) with semicarbazide hydrochloride followed by sodium ethoxide treatment afforded an α,β-mixture of 3-amino-2N-carbamoyl-4-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)pyrazole (IX). Conversion of IX to 4-oxo-8-(2,3-O-isopropylidene-5-O-trityl-D-ribofuranosyl)-3H-pyrazolo[1,5-a]-1,3,5-triazine (XIII) was achieved by treatment of IX with ethylorthoformate. The β-isomer IXb gave only the β-isomer XIIIb, and the α-isomer IXa was converted exclusively into the α-isomer XIIIa. Upon deprotection with 3% n-butanolic hydrogen chloride, both IXa and IXb gave the same mixture of the α- and β-isomers of 3-amino-2N-carbamoyl-4-(D-ribosyl)pyrazole, which were separated by chromatography. The syntheses of the hitherto unknown compounds, 3-amino-2N-carbamoylpyrazole (IVa) and its 4-methyl analog (IVb) are also reported. Experimental details of the synthesis of 3-amino-4-(2,3-O-isopropylidene-5-O-trityl-β-D-ribofuranosyl)pyrazole (XIIb), an important intermediate for “purine-like” C-nucleosides, are also described.  相似文献   

20.
Pyrazolo[1,5-d][1,2,4]triazines were synthesized from pyrazolecarboxylic acid hydrazides and carbonyl compounds. Pyrazolecarboxylic acid N-phenylhydrazide (1c) and formaldehyde gave not only the expected 4hn but 5 , respectively. The methyl substituted hydrazides with acetone afforded hydrazones, pyrazolotriazines or 13 depending on the position of the substituents. The reduction of both products yielded pyrazolecarboxylic acid hydrazides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号