共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
为了适应新冠肺炎疫情时期线上教学要求,保证大学物理课程教学的顺利实施,本学期开始我校就对特殊时期的线上教学模式进行了探索.通过调研不同教学平台线上教学特点,最终决定采用钉钉和雨课堂作为主要的授课软件,学校网络教学平台作为教学资源上传平台,保证学生有系统的线上文件库.因为雨课堂的数据记录与分析功能,雨课堂被选为单元测试及课堂测试平台.通过在各平台实施“课前预习、课中直播讨论学习、课后复习”的全过程教学模式,不仅有效的开展了线上教学,还能采集到学生的学习数据,有效掌握学生的学习情况,为大学物理线上教学提供保障. 相似文献
3.
4.
本文介绍了营口理工学院“大学物理”课程的设置,从线上教学资源的准备、线上教学活动的设计以及课程考核方式三个方面,对该校“大学物理”课程线上教学案例进行分享.疫情期间的线上教学,为该校“大学物理”课程教学改革打开了一扇崭新的大门,此次教学尝试,将会在今后的教学实践中不断完善. 相似文献
5.
弱光上转换是将低能量光子转换为高能量光子的过程,在三维荧光显微成像、太阳能电池、光催化等领域具有广泛的潜在应用,因而成为有机荧光材料领域的热点课题。目前基于三线态-三线态湮灭机制有机弱光上转换材料(TTA-UC)的研究已较为深入,有关发光机理及应用研究均有较多报道;然而针对另一种有机弱光上转换机理——基于单光子热带吸收的弱光上转换(OPA-UC)的研究目前还较为少见。氮杂蒽衍生物由于具有良好的结构刚性和平面性,高的荧光量子产率,是研究TTA-UC和OPA-UC两种有机上转换发光的理想模型分子结构。通过研究比较三种氮杂蒽衍生物:酚藏花红(PSF)、藏红T(SFT)、亚甲基紫(MTV)各自TTA-UC和OPA-UC的发光性能差异,分析探讨了分子结构对OPA-UC发光性能及TTA-UC敏化效率的构效关系。实验发现酚藏花红和藏红T由于具有较高的荧光量子产率,同时辐射衰减常数较大,其主要衰减过程为辐射衰减;而亚甲基紫具有较高的分子内电荷转移能力(ICT),因而非辐射衰减部分更多。研究三种分子的TTA-UC性能,发现亚甲基紫的三线态能级过低无法进行三线态-三线态能量转移过程,而藏红T由于拥有更高的三线态寿命而具有更高的上转换发光效率(9.69%),是酚藏花红体系(3.16%)的3倍。进一步研究酚藏花红和亚甲基紫的OPA-UC性能差异,发现相同浓度条件(10-3 mol·L-1)下亚甲基紫(0.12%)的OPA-UC发光效率相较于酚藏花红(0.059%)更高,且随着浓度的升高,亚甲基紫的OPA-UC发光增强效应更大。进一步研究表明,在TTA-UC发光过程中,敏化剂的敏化效率主要受分子三线态寿命以及系间窜跃能力影响,寿命越长,系间窜跃能力越强,敏化效率越高;而在OPA-UC发光过程中,湮灭剂分子的发光学率主要受ICT影响,ICT能力越大,分子发光效率越高。使用氮杂蒽分子廉价易得,对未来高性能TTA-UC和OPA-UC发光分子的设计具有一定的实际意义。 相似文献
6.
7.
“预学导学一体化”课堂模式立足于“课堂”,通过改革课堂组织形式和教学手段,实现了“低耗高效”,在效益和效率上追求课堂教学的高效,变“接受式”学习为自选“超市式”的主动学习,并注重学习能力的生成. 相似文献
8.
实践教学是理工科院校中不可或缺的育人内容。大学物理实验作为重要基础实验课程,内容涉及丰富的力、热、光、电、磁等方面的物理现象以及相关物理量的测量,“天然地”满足学生“在更广泛的专业交叉和融合中学习”的需要。近年来,立足物理实验教学中心这一平台,从结合数字信息系统(DIS)的实践教学内容与模式重构、科创结合、以赛促学、产学研融入等方面对物理实验在实践育人方面进行了改革探索,取得一定教学成果并积累了一些经验。 相似文献
9.
10.
重点分析了物理线上教学与线下教学两种教学方式的利弊及比较,探讨了在新课程改革的不断推进下,物理混合式教学的实施与策略. 相似文献
11.
12.
13.
"教-学-评一体化"的课堂是指围绕教学目标,教师的教学、学生的学习以及教师对学生的评价组成一个有机的、整体的有效课堂.教学"有效"的唯一证据在于目标的达成,在于学生学习结果的质量,在于何以证明学生学会了什么.因此,教学中要关注对学生的评价.本文以"示波器的原理——带电粒子在电场中的偏转"为例,论述在"教-学-评一体化"的课堂中如何用评价促进学生思维发展. 相似文献
14.
Development of an electronic stopping power model based on deep learning and its application in ion range prediction 下载免费PDF全文
Deep learning algorithm emerges as a new method to take the raw features from large dataset and mine their deep implicit relations, which is promising for solving traditional physical challenges. A particularly intricate and difficult challenge is the energy loss mechanism of energetic ions in solid, where accurate prediction of stopping power is a long-time problem. In this work, we develop a deep-learning-based stopping power model with high overall accuracy, and overcome the long-standing deficiency of the existing classical models by improving the predictive accuracy of stopping power for ultra-heavy ion with low energy, and the corresponding projected range. This electronic stopping power model, based on deep learning algorithm, could be hopefully applied for the study of ion-solid interaction mechanism and enormous relevant applications. 相似文献
15.
Due to the outbreak of the new crown epidemic, online teaching is booming, but compared with traditional offline teaching, there are many problems, such as the difficulty of detecting the voice status of students. Therefore, the research on students’ online status detection system is of great significance. In this paper, based on image processing, the detection method of online classroom students’ learning behavior status is studied, and the learning status of students is detected from the perspective of face detection and face recognition fatigue detection. In this study, the students’ learning status is detected by the facial expressions in the video during the students’ learning process. When the students have negative emotions and become tired, the system can detect and record them in time and issue a warning. Therefore, this research can well solve the problems existing in online teaching, and to a certain extent, the teaching quality has been greatly improved. 相似文献
16.
17.
Xiaobing Li Ranran Guo Yu Zhou Kangning Liu Jia Zhao Fen Long Yuanfang Wu Zhiming Li 《中国物理C(英文版)》2023,47(3):034101-034101-8
Exploration of the QCD phase diagram and critical point is one of the main goals in current relativistic heavy-ion collisions. The QCD critical point is expected to belong to a three-dimensional (3D) Ising universality class. Machine learning techniques are found to be powerful in distinguishing different phases of matter and provide a new way to study the phase diagram. We investigate phase transitions in the 3D cubic Ising model using supervised learning methods. It is found that a 3D convolutional neural network can be trained to effectively predict physical quantities in different spin configurations. With a uniform neural network architecture, it can encode phases of matter and identify both second- and first-order phase transitions. The important features that discriminate different phases in the classification processes are investigated. These findings can help study and understand QCD phase transitions in relativistic heavy-ion collisions. 相似文献
18.
介绍了我们通过制作演示实验装置促进动手动脑的大学物理探索式学习的教学改革实践.详细说明了动手动脑学习的试验过程、试验结果.自制物理演示实验装置给学生提供了一个可以自主选题的探索式学习平台. 相似文献
19.
Deep learning, accounting for the use of an elaborate neural network, has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present work, we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks: Long Short-Term Memory (LSTM) and Deep Residual Network (ResNet), in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems. By taking the dynamics of Bose–Einstein condensates in a double-well potential as an example, we show that our new method makes a highly efficient pre-learning and a high-fidelity prediction about the whole dynamics. This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved with a single network in the case of direct learning. Our method can be applied for simulating complex cooperative dynamics in a system with fast multiplefrequency oscillations with the aid of auxiliary spectrum analysis. 相似文献