首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several series of nylon 66 copolyamides were prepared with up to 30 mole-% substitution of ringed comonomers of the type X-(CH2)n-R-(CH2)n-X, where n = 0, 1, or 2; X = ?NH2 or ? CO2H; and R = phenylene, cyclohexylene, or naphthyle. The ring structure was correlated with glass transition temperature and melting point. The important features of ring structure fall into the following categories: ring isomerism, aromaticity, diamine vs. diacid substitution, chain length, and ring substitution. Proper “fit” (isomorphism) of the comonomer into the nylon 66 chain appears to be the main criterion for ringed copolymers of high Tg and high melting point.  相似文献   

2.
1.5-Bis(methylamino)hexamethyltrisildioxane reacts in the presence of triethylamine easily with germanium tetrachloride (equ. 1) and ethyldichlorophosphine (equ.2) to give the formerly unknown inorganic eightmembered ring systems Si3GeN2O2 and Si3PN2O2. Respectively. By analogous reacting of silicon tetrachloride only open chained Cl3Si? Nme? Sime2? O? Sime2? O? Sime? NHme (IV; equ. 3) is formed. With metallated 1.5-bis(alkylamino)trisildioxanes, dischlorodiorganylsilanes do not give the expected asymmetric-, but the symmetric cyclotetrasildioxdiazanes V–VII. Dichlorophenylborane, in an analogous reaction, leads to the novel eightmembered ring system BSi3N2O2, but the exact position of the N and O atoms in the ring could not be fixed beyond any doubt. The novel sixmembered ring system BSi2Ni2O was realized in compound IX via equ. (6).  相似文献   

3.
The title compound, 4‐methoxy‐2‐[(1S,2R,3S,4S,5R)‐3,4,5,6‐tetrahydro‐3,4,5‐tri­hydroxy‐6‐(hydroxy­methyl)‐2H‐­pyran‐2‐yl]‐α‐resorcylic acid δ‐lactone monohydrate, C14H16O9·H2O, is a C‐glucoside of 4‐O‐methylgallic acid which has antiasthmatic, antitussive, anti‐inflammatory, antifungal, anti‐HIV and antihepatotoxic activity. The mol­ecule is composed of three six‐membered rings: an aromatic ring, a glucopyran­ose ring and an annellated δ‐lactone ring. The glucopyran­ose ring exhibits only small deviations from an ideal chair conformation. The annellated δ‐lactone ring possesses the expected half‐chair conformation. There is one intra‐ and six intermolecular hydrogen bonds which form an extensive hydrogen‐bonding network within the crystal.  相似文献   

4.
The mechanism of the cycloaddition reaction between singlet H2Si=Si: and formaldehyde has been investigated with the CCSD(T)//MP2/6-31G* method. From the potential energy profile, it could be predicted that the reaction has three competitive dominant reaction pathways. The reaction rules presented is that the 3p unoccupied orbital of the Si: atom in H2Si=Si: inserts the π orbital of formaldehyde from the oxygen side, resulting in the formation of an intermediate. Isomerization of the intermediate further generates a four-membered ring silylene (the H2Si–O in the opposite position). In addition, the [2+2] cycloaddition reaction of the two π-bonds in H2Si=Si: and formaldehyde also generates another four-membered ring silylene (the H2Si–O in the syn-position). Because of the unsaturated property of the Si: atom in the two four-membered ring silylenes, the two four-membered ring silylenes could further react with formaldehyde, generating two silicic bis-heterocyclic compounds. Simultaneously, the ring strain of the four-membered ring silylene (the H2Si–O in the syn-position) makes it isomerize to a twisted four-membered ring product.  相似文献   

5.
Detailed 1H NMR studies of ms tetraphenylchlorins (H2TPC), new amino- and hydroxypyrroline substituted ms tetraphenylchlorins and ms tetraphenylisobacteriochlorins (H2TPisoB) are presented and discussed. The results obtained are consistent with the general aspects of the ring current models as applied to the parent porphyrins. According to proton chemical shifts a gradual reduction in the magnitude of the ring current is observed in the order ms tetraphenylporphyrin (H2TPP) > H2TPC> ms tetraphenylbacteriochlorin (H2TPB) > H2TPisoB. The 1H NMR spectra show chemical non-equivalence of the pyrroline ring protons due to adjacent substituents, and effects of steric constraints on the aminoalkyl substituents due to the close vicinity to the meso phenyl rings. The non-equivalence of the methylene protons of the pyrroline ring produces geminal coupling between the two methylene protons and vicinal coupling with the adjacent pyrroline proton, more pronounced in H2TPC? OH and in . Restricted configuration of the methylene groups in the ethyl groups of H2TPC? C(H)(CH3)N(CH2CH3)2 produces observable geminal coupling between the methylene protons. 1H NMR reveals the difference between two types of meso phenyls in the chlorins, and three types of meso phenyls in isobacteriochlorins, as reflected in the chemical shifts of the o-phenyl protons.  相似文献   

6.
Two open‐framework bimetallic phosphites, [C6H18N2][Co0.3Zn2.7 (HPO3)4] ( 1 ) and [C2H8N]2[Co0.3Zn2.7(HPO3)4] ( 2 ) were synthesized and characterized. The inorganic frameworks of the two compounds are constructed from strictly alternating MO4 (M = Zn, Co)tetrahedra and HPO3 pseudo pyramids, forming three‐dimensional networks with 8‐ring and 12‐ring channels for 1 and 16‐ring channels for 2 . The anionic frameworks of the two compounds can be easily transformed to a neutral framework structure with 16‐ring channels at room temperature.  相似文献   

7.
杨丽娟a  b  李晓艳b  曾艳丽b  孟令鹏b  郑世钧b   《中国化学》2009,27(6):1025-1030
利用密度泛函和电子密度拓扑分析方法对CH3NO2 (NM)的异构化反应进行了研究。 找到了九种可能的异构体和八个反应通道。通过内禀反应坐标(IRC)分析确认了过渡态与异构体之间的连接关系。计算结果表明,在CH3NO2→CH3ONOt反应过程中,过渡态为紧密结构(在整个反应过程中CH3NO2没有分解为CH3 和NO2 ),与Arenass等人的结论一致。在CH3NOOc→CH2NOOH反应过程中,存在有一个含有四元环→五元环→四元环→五元环变化过程的结构过渡区,这也是在反应过程中首次发现五元环状过渡结构。  相似文献   

8.
Infrared multiple photon dissociation (IRMPD) spectroscopy was used to study formation of b 2+ from nicotinyl-glycine-glycine-methyl ester (NicGGOMe). IRMPD shows that NicGGOMe is protonated at the pyridine ring of the nicotinyl group, and more importantly, that b 2+ from NicGGOMe is not protonated at the oxazolone ring, as would be expected if the species were generated on the conventional b n + /y n + oxazolone pathway, but at the pyridine ring instead. IRMPD data support a hypothesis that formation of b 2+ from NicGGOMe involves mobilization and transfer of an amide position proton during the fragmentation reaction.  相似文献   

9.
The localized molecular orbitals and energy levels for four typical conjugated six-membered ring systems C6H6, C3N3H3, B2N8H4, and (B2O4)3- as well as a non-aromatic reference molecule Pa-N3Cl6 have been calculated by using Edmiston- Ruedenberg energy localization technique under the CNDO / 2 approximation in order to investigate the nature of aromaticity or quasi-aromaticity of the six-membered ring systems studied. The contour maps for x-type localized MO's (LMO) have been plotted to illustrate the bonding characteristics of the five ring systems studied. These LMO calculations show that for all the conjugated six-membered ring systems considered there exists local delocalization of x-bonds or three-centered and occasionally four-centered two-electron x-bonds in our terminology, and the cooperative effect among these x-bonds leading to the formation of a closed continuous x-conjugation system around the ring, which is necessary for the creation of aromaticity in the systems studied. We have been able to discuss the properties of these three-centered x-bonds in terms of the constituent atoms and electrons and the relevant orbitals involved.  相似文献   

10.
The title compound, C22H19N3O2S, crystallizes in two polymorphic forms having the same space group, viz. P, with Z′ = 2 and Z′ = 1. In both polymorphs, the planar thia­zole ring is fused cis with the dihydro­pyrimidine ring, the carbamoyl group is in an extended conformation with an anti­clinal orientation with respect to the pyrimidine ring, and the phenyl ring is attached to the pyrimidine ring approximately at a right angle. The two polymorphs have different inter­planar angles between the phenyl and thia­zole rings. The mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds.  相似文献   

11.
The crystal structures of three compounds involving aminopyrimidine derivatives are reported, namely, 5-fluorocytosinium sulfanilate–5-fluorocytosine–4-azaniumylbenzene-1-sulfonate (1/1/1), C4H5FN3O+·C6H6NO3S·C4H4FN3O·C6H7NO3S, I , 5-fluorocytosine–indole-3-propionic acid (1/1), C4H4FN3O·C11H11NO2, II , and 2,4,6-triaminopyrimidinium 3-nitrobenzoate, C4H8N5+·C7H4NO4, III , which have been synthesized and characterized by single-crystal X-ray diffraction. In I , there are two 5-fluorocytosine (5FC) molecules (5FC-A and 5FC-B) in the asymmetric unit, with one of the protons disordered between them. 5FC-A and 5FC-B are linked by triple hydrogen bonds, generating two fused rings [two R22(8) ring motifs]. The 5FC-A molecules form a self-complementary base pair [R22(8) ring motif] via a pair of N—H…O hydrogen bonds and the 5FC-B molecules form a similar complementary base pair [R22(8) ring motif]. The combination of these two types of pairing generates a supramolecular ribbon. The 5FC molecules are further hydrogen bonded to the sulfanilate anions and sulfanilic acid molecules via N—H…O hydrogen bonds, generating R44(22) and R66(36) ring motifs. In cocrystal II , two types of base pairs (homosynthons) are observed via a pair of N—H…O/N—H…N hydrogen bonds, generating R22(8) ring motifs. The first type of base pair is formed by the interaction of an N—H group and the carbonyl O atom of 5FC molecules through a couple of N—H…O hydrogen bonds. Another type of base pair is formed via the amino group and a pyrimidine ring N atom of the 5FC molecules through a pair of N—H…N hydrogen bonds. The base pairs (via N—H…N hydrogen bonds) are further bridged by the carboxyl OH group of indole-3-propionic acid and the O atom of 5FC through O—H…O hydrogen bonds on either side of the R22(8) motif. This leads to a DDAA array. In salt III , one of the N atoms of the pyrimidine ring is protonated and interacts with the carboxylate group of the anion through N—H…O hydrogen bonds, leading to the primary ring motif R22(8). Furthermore, the 2,4,6-triaminopyrimidinium (TAP) cations form base pairs [R22(8) homosynthon] via N—H…N hydrogen bonds. A carboxylate O atom of the 3-nitrobenzoate anion bridges two of the amino groups on either side of the paired TAP cations to form another ring [R32(8)]. This leads to the generation of a quadruple DADA array. The crystal structures are further stabilized by π–π stacking ( I and III ), C—H…π ( I and II ), C—F…π ( I ) and C—O…π ( II ) interactions.  相似文献   

12.
A method based on the differences among the 1H NMR chemical shifts of geminal protons of ring‐F methylene resonances (H2‐23, H2‐24 and H2‐26) is proposed for ascertaining the 25R/25S stereochemistry of ring‐F unsubstituted spirostane‐type steroidal sapogenins and steroidal saponins. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
In the title compound, C22H17Cl2NO3S, the mol­ecule is a substituted 3,4‐di­hydro‐2H‐1,4‐benzoxazine compound which has three phenyl rings which are essentially planar. The 3,4‐di­hydro‐2H‐oxazine part of the mol­ecule is fused to the benzo ring and has a half‐boat conformation; the dihedral angle between the planar part of the oxazine ring and the benzo ring is 10.2 (2)°. The (3‐chloro­phenyl)­methyl­idene substituent has a Z configuration in relation to the ring N atom of the oxazine moiety. Interestingly, the p‐toluenesulfonyl (p‐tosyl) substituent on the ring N atom protrudes away from the 3‐­chloro­phenyl substituent thus avoiding any steric interaction.  相似文献   

14.
Summary N, N-Dimethyl-3-furancarbothioamide (Hbft) was cyclometallated with Li2PdCl4, K2PtCl4, RuCl2(CO)3, and RhCl (PBu3)2 (PBu3=tri-n-butylphosphine) to give, respectively, PdCl(bft), PtCl(bft), RuCl(bft)(CO)2, and RhCl2 (bft)(PBu3)2. These and some of their derivatives were characterized spectroscopically. Cyclometallation occurs regioselectively at position 2 of the furan ring to give a five-membered metallaheterocycle, along with Secoordination of the thioamide group. When the position 2 of the furan ring is blocked by a methyl group,N, N-dimethyl-2-methyl-3-furancarbothioamide (Hmft) is, in similar conditions, cyclopalladated at the N–Me substituout of the thioamide group, the furan ring being left intact. Position 4 of the furan ring of both Hbft and Hmft is unreactive toward cyclometallation.  相似文献   

15.
利用溶剂热法合成了2种含镉汞的二维(2D)四元硒化物K8Cd2.79Hg9.21Se16(1)和Rb4Hg3.04Cd2.96Se8 (2)。单晶X射线衍射分析表明,化合物1为正交晶系,空间群为Pbcn,a=1.082 71(17) nm,b=0.678 73(10) nm,c=1.415 0(2) nm,Z=1;化合物2为正交晶系,空间群为Ibam,a=0.640 72(10) nm,b=1.160 25(16) nm,c=1.452 0(2) nm,Z=2。化合物1中含有八元环Cd2Hg2Se4和六元环CdHg2Se3阴离子层(Cd2.79Hg9.21Se16)n8n-;化合物2中含有八元环Cd2(Cd/Hg)2Se4及四元环CdHgSe2和(Cd/Hg)2Se2阴离子层(Hg3.04Cd2.96Se8)n4n-。对这2种化合物进行了扫描电镜和能谱分析、粉末X射线衍射、差示扫描量热分析、固体-可见漫反射光谱和荧光性质等表征。  相似文献   

16.
Benzo-15-crown-5 ether derivatives of 1-hydroxy-9,10-anthraquinone-9-imine bearing a substituted benzoylamino group, NHCO(p-C6H4NO2) or NHCOC6F5, in position 2 were synthesized by a photochemical method. The structure of the fluorine-containing compound was determined by single-crystal X-ray diffraction. Both synthesized dyes, as well as their analogue without substituents on the benzoyl ring, are capable of binding Sr2+ and Ba2+ to form sandwich-type 2:1 (ligand:metal) complexes. In MeCN, these complexes exhibit higher stability constants (K2:1) than the corresponding 1:1 complexes (K1:1). The para-substitution of the benzoyl ring with a nitro group leads to a significant increase in both the K2:1 constant and the K2:1/K1:1 ratio. The fluorination of the benzoyl ring insignificantly affects the stability of sandwich complexes. Density functional theory calculations showed that this is related to steric interactions in the benzoylamino group. The calculated structures of the dyes and their sandwich complexes with Ba2+ are consistent with the 2D NOESY data.  相似文献   

17.
29Si chemical shifts are reported for nine 1,2-bis(trimethylsiloxy)cycloalkenes and four 1-trimethylsiloxycycloalkenes, (Me3SiO)xCnH2n–2–x (x=1, 2). For cycloalkene derivatives with n?8 the silicon shift exhibits a strong dependence on the ring size, although the silicon is exocyclic and is separated by two bonds from the olefinic carbon atom. The dependence can be exploited for ring size determination of cyclic ketones after trimethylsilylation.  相似文献   

18.
Two new salts, namely 2,6‐diamino‐4‐chloropyrimidinium 2‐carboxy‐3‐nitrobenzoate, C4H6ClN4+·C8H4NO6, (I), and 2,6‐diamino‐4‐chloropyrimidinium p‐toluenesulfonate monohydrate, C4H6ClN4+·C7H7O3S·H2O, (II), have been synthesized and characterized by single‐crystal X‐ray diffraction. In both crystal structures, the N atom in the 1‐position of the pyrimidine ring is protonated. In salt (I), the protonated N atom and the amino group of the pyrimidinium cation interact with the carboxylate group of the anion through N—H…O hydrogen bonds to form a heterosynthon with an R 22(8) ring motif. In hydrated salt (II), the presence of the water molecule prevents the formation of the familiar R 22(8) ring motif. Instead, an expanded ring [i.e. R 32(8)] is formed involving the sulfonate group, the pyrimidinium cation and the water molecule. Both salts form a supramolecular homosynthon [R 22(8) ring motif] through N—H…N hydrogen bonds. The molecular structures are further stabilized by π–π stacking, and C=O…π, C—H…O and C—H…Cl interactions.  相似文献   

19.
Two synthetic approaches to the novel C10H16 hydrocarbon tricyclo[4.4.0.03,9]decane ( 1 ; 2-homotwistbrendane), one of the 19 members of the adamantaneland, and its Lewis-acid-catalyzed rearrangement are described. One route starts from tricyclo[4.3.0.03,8]nonan-2-one ( 2 ; 2-twistbrendanone). The missing tenth C-atom is introduced by ring enlargement (Tiffeneau-Demjanov method). Starting from methyl 8,9,10-trinorborn-5-ene-2-endo-carboxylate ( 8 ), ring enlargement by one C-atom, regio- and stereoselective introduction of a C1 unit to a 2-endo,6-endo-disubstituted bicyclo[3.2.1]octane, and ring closure by acyloin condensation are the key steps in the second approach.  相似文献   

20.
The pyrimidine ring of the title compound, C11H16N2O5S·H2O, is planar to within 0.026 (1) Å and makes an angle of 77.73 (8)° with the mean plane of the thiosugar ring. In terms of standard nucleoside nomenclature, this ring has a C1′‐exo,C2′‐endo conformation. The O5′—C5′—C4′—C3′ torsion angle is ?167.4 (2)° and the glycosidic S4′—C1′—N1—C2 torsion angle is ?101.8 (2)° (anti).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号