首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Algae in drinking water supplies often bring about impact on the water treatment. In this study, a bipolar pulsed dielectric barrier discharge system in three-phase discharge plasma reactor was constructed for investigating its ability to control excessive growth of cyanobacteria, Microcystis aeruginosa. Experimental results show there was almost no change in optical density immediately after the interruption of electrical discharge, but the decreasing trend of optical density, cell density and chlorophyll-a content was obvious during the incubation period, indicating a significant residual effect of electrical discharge process on the algal growth inhibition. Scanning electron microscopy investigation of algae revealed surface damage, apparent leakage of intracellular contents and pores formed after electrical discharge process, which showed that algal cells had no potential to survive and grow. Compared with the control sample, it was observed that electrical discharge on the algal extracellular products has almost no residual effect and the growth rate of algae slightly decreased before three days storage. Hydrogen peroxide was produced by electrical discharge in the μM level and showed a first-order decay. But at such level, the external addition of hydrogen peroxide alone is not likely to cause the residual effect. These results implicated that the growth inhibition of M. aeruginosa was mainly caused by electrical discharge process, and it made the algal cells lose ability to survive, demonstrating the considerable potential of such an alternative process for efficient water purification.  相似文献   

2.
In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4–7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.  相似文献   

3.
The objective of this research was to develop large-scale technologies to produce oil-rich algal biomass from wastewater. The experiments were conducted using Erlenmeyer flasks and biocoil photobioreactor. Chlamydomonas reinhardtii was grown in artificial media and wastewaters taken from three different stages of the treatment process, namely, influent, effluent, and centrate. Each of wastewaters contained different levels of nutrients. The specific growth rate of C. reinhardtii in different cultures was monitored over a period of 10 days. The biomass yield of microalgae and associated nitrogen and phosphorous removal were evaluated. Effects of CO2 and pH on the growth were also studied. The level of nutrients greatly influenced algae growth. High levels of nutrients seem to inhibit algae growth in the beginning, but provided sustained growth to a high degree. The studies have shown that the optimal pH for C. reinhardtii is in the range of 7.5. An injection of air and a moderate amount of CO2 promoted algae growth. However, too much CO2 inhibited algae growth due to a significant decrease in pH. The experimental results showed that algal dry biomass yield reached a maximum of 2.0 g L−1 day−1 in the biocoil. The oil content of microalgae of C. reinhardtii was 25.25% (w/w) in dry biomass weight. In the biocoil, 55.8 mg nitrogen and 17.4 mg phosphorus per liter per day were effectively removed from the centrate wastewater. Ferric chloride was found to be an effective flocculent that helps the algae settle for easy harvest and separation from the culture media.  相似文献   

4.
Microcystins (MCs) are a family of natural toxins produced by cyanobacteria (blue-green algae). Microbial degradation is considered an efficient method for eliminating cyanobacteria and MCs in environmental conditions. This study examines the ability of Trichaptum abietinum 1302BG, a white rot fungus, to degrade microcystin-LR in the harmful algal culture of Microcystis aeruginosa PCC7806. Results showed that microcystin-LR could not be detected by high-performance liquid chromatography after 12 h in algal culture incubated with the fungus. There were also high activities of catalase and peroxidase in algal culture incubated with the fungus. However, similar to the control, they decreased to normal levels after 72 h. Meanwhile, the micronucleus test in the toxicity studies revealed that the degraded algal culture had low toxicity.  相似文献   

5.
Microalgae have been proposed as a promising source for biodiesel production. Focusing on algal strains for biodiesel production, efforts should be made to search new strains. Experiments were carried out to investigate the effects of growth parameters (nutrients, pH, light, aeration and temperature) and the oil percentage of eight algal strains (Chlorella sp., Cladophora sp., Hydrodictylium sp., Oedogonium sp., Oscillatoria sp., Spirogyra sp., Stigeocolonium sp., Ulothrix sp.). Results show that 6.5–7.5 is the optimum pH for the growth of all algal species. Temperature showed a greater variation (25°40°C). Ulothrix sp. gave more biomass productivity and is the most suitable strain for biodiesel production due to higher oil percentage (62%). Least biomass production was observed for Stigeocolonium sp. and least oil content was obtained from Hydrodictylium sp. It was observed that among these eight algal strains for biodiesel production, Ulothrix and Chlorella are the most promising algae species.  相似文献   

6.
A series of new amide–quinoxaline ordered copolymers derived from phthaloyl, isophthaloyl, and terephthaloyl chlorides have been synthesized and characterized. The isophthaloyl and terephthaloyl polymers had decomposition temperatures between 445–495°C and were soluble in a variety of solvents. These high molecular weight polymers were prepared by reacting aromatic bis-o-diamines with bis(benzilyl)amides. Phthaloyl chloride yielded low molecular weight polymers due to competing side reactions.  相似文献   

7.
Massive quantities of marine seaweed, Ulva armoricana are washed onto shores of many European countries and accumulates as waste. Attempts were made to utilize this renewable resource in hybrid composites by blending the algal biomass with biodegradable polymers such as poly(hydroxy‐butyrate) and poly‐(ε‐caprolactone). Compression‐molded films were developed and examined for their morphological, thermal and mechanical property. The Ulva fibers were well dispersed throughout the continous matrix exhibiting considerable cohesion with both polymers. Occasionally, regions with exposed fibres or aggregates were visible. About 50% algal content seemed to be an ideal concentration, thereafter, thermal stability was impacted. A progressive decrease in melting heat (ΔHm) was observed with increased algal content as well as a decrease in the crystallinity of the polymer matrix due to the presence of the organic filler. The addition of algal fibres improved the Young modulus of the blends, creating a concomitant loss in percent elongation (El) and ultimate tensile strength. Fiber content above 40% impacted tensile property negatively and composites with over 70% fiber contents composites were too fragile. Data suggest that macro algae are compatible with both polymers and processable as fillers in hybrid blends. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
9.
Stratospheric ozone depletion is mostly marked over the Antarctic and to a lesser extent over the Arctic, though recent reports have revealed that this also occurs at lower latitudes. Continued depletion of ozone in the lower stratosphere allows more UVR to reach the Earth's surface. Furthermore, it is projected that surface water temperatures will increase by between 0.2 and 2.0°C by the year 2060 and this will directly or indirectly influence algal growth. The interactions between environmental factors are complicated by the existence of different strains (ecotypes) of the same species that may respond differently. To understand the interactive effects of temperature and UV‐B on two strains of Anabaena circinalis, we investigated the damaging effects of UV‐B on cell numbers and photosynthetic characteristics and also examined the effect of temperature on the capacity of cells to recover from such stress. Both strains of A. circinalis responded differently in terms of survival, photosynthetic characteristics and recovery with interactions between temperature and UV‐B. This could be due to the variations in strain‐specific photoreactive mechanisms. This needs to be explored further including more strains and species before definitive conclusions can be reached about effects of global change on cyanobacteria generally.  相似文献   

10.
Gold carbene reactivity patterns were accessed by ynamide insertion into a C(sp3)? H bond. A substantial increase in molecular complexity occurred through the cascade polycyclization of N‐allyl ynamides to form fused nitrogen‐heterocycle scaffolds. Exquisite selectivity was observed despite several competing pathways in an efficient gold‐catalyzed synthesis of densely functionalized C(sp3)‐rich polycycles and a copper‐catalyzed synthesis of fused pyridine derivatives. The respective gold–keteniminium and ketenimine activation pathways have been explored through a structure–reactivity study, and isotopic labeling identified turnover‐limiting C? H bond‐cleavage in both processes.  相似文献   

11.
Focusing on CO2 fixation, photoautotrophic cultivation of the red algaPorphyridium cruentum was investigated by means of a batch culture under a 5% CO2-enriched atmosphere. The algal growth kinetics was successfully described with a logistic model, and simulation of a continuous culture under the optimum growth conditions (30°C, 12 klux and 1.18 g-cells/L) showed that the algal CO2-fixation activity could reach 0.66 g-CO2/(L X d). Under the same growth conditions, eicosapentaenoic acid (20:5 n-3, EPA) and arachidonic acid (20:4 n-6, ARA) yields were similarly calculated to be 3.6 mg-EPA/(L X d) and 6.5 mg-ARA/(L X d), respectively.  相似文献   

12.
Pathway complexity has become an important topic in recent years due to its relevance in the optimization of molecular assembly processes, which typically require precise sample preparation protocols. Alternatively, competing aggregation pathways can be controlled by molecular design, which primarily rely on geometrical changes of the building blocks. However, understanding how to control pathway complexity by molecular design remains elusive and new approaches are needed. Herein, we exploit positional isomerism as a new molecular design strategy for pathway control in aqueous self‐assembly. We compare the self‐assembly of two carboxyl‐functionalized amphiphilic BODIPY dyes that solely differ in the relative position of functional groups. Placement of the carboxyl group at the 2‐position enables efficient pairwise H‐bonding interactions into a single thermodynamic species, whereas meso‐substitution induces pathway complexity due to competing hydrophobic and hydrogen bonding interactions. Our results show the importance of positional engineering for pathway control in aqueous self‐assembly.  相似文献   

13.
Loss of water and acetic acid in the epimeric bornyl alcohols and acetates are shown to be analogous processes by specific 2H-labelling. Among several competing mechanisms cis-1,2-elimination is the most important. Mctastable ion characteristics of this specific process exhibit some unusual features and its product is shown to have a different structure from that produced by the competing reactions.  相似文献   

14.
The competition between honeycomb and hexagonal tiling of molecular units can lead to large honeycomb superstructures on surfaces. Such superstructures exhibit pores that may be used as 2D templates for functional guest molecules. Honeycomb superstructures of molecules that comprise a C3 symmetric platform on Au(111) and Ag(111) surfaces are presented. The superstructures cover nearly mesoscopic areas with unit cells containing up to 3000 molecules, more than an order of magnitude larger than previously reported. The unit cell size may be controlled by the coverage. A fairly general model was developed to describe the energetics of honeycomb superstructures built from C3 symmetric units. Based on three parameters that characterize two competing bonding arrangements, the model is consistent with the present experimental data and also reproduces various published results. The model identifies the relevant driving force, mostly related to geometric aspects, of the pattern formation.  相似文献   

15.
Laser-induced breakdown spectroscopy (LIBS) is used for the identification of the presence of hazardous bacteria in food. In this study, our main focus was centered on the identification of S. enterica serovar Typhimurium, a Gram-negative foodborne pathogen, in various liquids such as milk, chicken broth, and brain heart infusion due to the infection being most prevalent in raw meat and dairy products. A Nd:YAG laser of operating wavelength 266 nm was used to obtain the spectra from the artificially inoculated liquid samples. A series of experiments were performed to determine the effectiveness of LIBS to discriminate the bacteria from the background liquids. These results are compared with competing modern molecular methods of detection which include polymerase chain reaction (PCR) and quantitative real-time PCR. In addition to analyzing S. enterica serovar Typhimurium, another common Gram-negative, Escherichia coli, as well as Gram-positive pathogen, Staphlycoccus auerus, were used to determine the specificity of the LIBS technique.  相似文献   

16.
《Electroanalysis》2006,18(11):1041-1046
The successful development and analytical performances of two biosensor configurations based on the entrapment of algal cells of Chlorella vulgaris into either a regular alginate gel or a newly synthesized pyrrole‐alginate matrix are reported. These biosensors were compared in terms of their amperometric current measurements to p‐nitrophenyl phosphate when used as substrate for the detection of an algal alkaline phosphatase activity. The high stability of the pyrrole‐alginate gel when compared to that of the alginate coating is herein demonstrated.  相似文献   

17.
Molecular electronic spectroscopy featuring intramolecular proton transfer and twisted intramolecular charge transfer poses a whole new range of problems for computational quantum chemistry. The development of the four-level laser based on the intramolecular proton-transfer focuses on the subtleties of the interaction of the singlet and triplet electronic state manifolds of the two different tautomeric species. Examples are given of the sensitive variation of proton-transfer fluorescence with chemical substitution. A competing excitation channel is shown to exist when internal molecular torsion couples with sudden polarization to yield a twisted intramolecular charge transfer configuration. In such systems, three competing fluorescences can be observed. Several electronic puzzles will be presented that can provide fertile territory for quantum chemical computations. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
This paper reports on the gas‐phase radical–radical dynamics of the reaction of ground‐state atomic oxygen [O(3P), from the photodissociation of NO2] with secondary isopropyl radicals [(CH3)2CH, from the supersonic flash pyrolysis of isopropyl bromide]. The major reaction channel, O(3P)+(CH3)2CH→C3H6 (propene)+OH, is examined by high‐resolution laser‐induced fluorescence spectroscopy in crossed‐beam configuration. Population analysis shows bimodal nascent rotational distributions of OH (X2Π) products with low‐ and high‐N′′ components in a ratio of 1.25:1. No significant spin–orbit or Λ‐doublet propensities are exhibited in the ground vibrational state. Ab initio computations at the CBS‐QB3 theory level and comparison with prior theory show that the statistical method is not suitable for describing the main reaction channel at the molecular level. Two competing mechanisms are predicted to exist on the lowest doublet potential‐energy surface: direct abstraction, giving the dominant low‐N′′ components, and formation of short‐lived addition complexes that result in hot rotational distributions, giving the high‐N′′ components. The observed competing mechanisms contrast with previous bulk kinetic experiments conducted in a fast‐flow system with photoionization mass spectrometry, which suggested a single abstraction pathway. In addition, comparison of the reactions of O(3P) with primary and tertiary hydrocarbon radicals allows molecular‐level discussion of the reactivity and mechanism of the title reaction.  相似文献   

19.
Multiresponsive materials that display predefined photoluminescence color changes upon exposure to different stimuli are attractive candidates for advanced sensing schemes. Herein, we report a cyano‐substituted oligo(p‐phenylene vinylene) (cyano‐OPV) derivative that forms five different solvent‐free solid‐state molecular assemblies, luminescence properties of which change upon thermal and mechanical stimulation. Single‐crystal X‐ray structural analysis suggested that tolyl groups introduced at the termini of solubilizing side‐chains of the cyano‐OPV play a pivotal role in its solid‐state arrangement. Viewed more broadly, this report shows that the introduction of competing intermolecular interactions into excimer‐forming chromophores is a promising design strategy for multicolored thermo‐ and mechanoresponsive luminescent materials.  相似文献   

20.
Photomotility responses in flagellate alga are mediated by two types of sensory rhodopsins (A and B). Upon photoexcitation they trigger a cascade of transmembrane currents which provide sensory transduction of light stimuli. Both types of algal sensory rhodopsins demonstrate light‐gated ion channel activities when heterologously expressed in animal cells, and therefore they have been given the alternative names channelrhodopsin 1 and 2. In recent publications their channel activity has been assumed to initiate the transduction chain in the native algal cells. Here we present data showing that: (1) the modes of action of both types of sensory rhodopsins are different in native cells such as Chlamydomonas reinhardtii than in heterologous expression systems, and also differ between the two types of rhodopsins; (2) the primary function of Type B sensory rhodopsin (channelrhodopsin‐2) is biochemical activation of secondary Ca2+‐channels with evidence for amplification and a diffusible messenger, sufficient for mediating phototaxis and photophobic responses; (3) Type A sensory rhodopsin (channelrhodopsin‐1) mediates avoidance responses by direct channel activity under high light intensities and exhibits low‐efficiency amplification. These dual functions of algal sensory rhodopsins enable the highly sophisticated photobehavior of algal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号