首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compound, [2,6‐bis(di‐tert‐butylphosphino)phenyl‐1κ3P,C1,P′]di‐μ‐chlorido‐1:2κ4Cl:Cl‐(2η4‐cycloocta‐2,5‐diene)hydrido‐1κH‐diiridium(I,III) hexane hemisolvate, [Ir2(C8H12)(C24H43P2)Cl2H]·0.5C6H14 or [(tBuPCP)IrH(μ2‐Cl)2Ir(COD)][tBuPCP is κ3‐2,6‐(tBu2PCH2)2C6H3 and COD is η4‐2,5‐cyclooctadiene], is an IrIII/IrI dimer bridged by two chloride ions. The Ir2Cl2 framework is nearly planar, with a dihedral angle of 13.04 (4)° between the two Ir centers. The compound was isolated as a hexane hemisolvate. A list of distances found in Ir(PCP) compounds is given.  相似文献   

2.
The complex [Rh(η3‐benzyl)(dippe)] ( 1 ; dippe=bis(diisopropylphosphino)ethane=(ethane‐1,2‐diyl)bis[diisopropylphosphine]) reacted cleanly with Mes*PH2 ( 2 ; Mes*=2,4,6‐tBu3C6H2) to provide a new Rh species [Rh(H)(dippe)(L)] ( 3 ), L being the 2,3‐dihydro‐3,3‐dimethyl‐1H‐phosphindole ligand 4 (=tBu2C6H2(CMe2CH2PH)) (Scheme 1). Complex 3 was converted to the corresponding chloride [Rh(Cl)(dippe)(L)] ( 6 ) when treated with CH2Cl2, whereas the dimeric species [Rh2{μtBu2C6H2(CMe2CH2P)}(μ‐H)(dippe)2] ( 7 ) was formed upon thermolysis in toluene (Scheme 2). The structures of 6 and 7 ⋅C7H8 were determined by X‐ray crystallography. Complexes 1 and 3 served as catalyst precursors for the dehydrogenative coupling of C−H and P−H bonds in the conversion of 2 to 4 (Scheme 3). Deuteration studies with Mes*PD2 exposed a complex series of bond‐activation pathways that appear to involve C−H activation of the dippe ligand by the Rh‐atom (Schemes 4 and 5)  相似文献   

3.
The syntheses of the homo‐ and hererobimetallic compounds [Ln1M(η5‐C5H4)CMe25‐C9H6)2MLn] ( 2a‐5d ), [(C9H7)CMe25‐C5H4)Fe(η5‐C5H4)CMe25‐C9H6)2MLn] ( 6a‐c ), and [(η5‐C5H4)CMe25‐C9H6)2MLn]2Fe ( 7a‐b ) are reported with 1MLn = Rh(cod) 2 , Ir(cod) 3 , Mn(CO)3 4 and FeCp 5 , 2MLn = Rh(cod) a , Ir(cod) b , Mn(CO)3 c and FeCp d , respectively. Crystal structures of 3a, 3b and 5c are described showing two different ligand conformations in form of two rotamers. The energetic difference between these both rotamers is insignificant small in the gas phase according to DFT calculations. The rotation barrier for the species has been determined to 23 kJ/mol. According to the absence of intermolecular interactions in the solid state, the preference for one of the conformers is deduced from packing effects. All complexes are investigated by cyclic voltammetry. The shift of the redox potentials with respect to the mononuclear reference systems is a suitable tool to determine intermetallic electronic interaction. For some compounds, the normal behaviour with an increasing separation of the redox potentials is observed. A second group of complexes shows the opposite behaviour with a decreasing in the potential differences. A mechanism of intramolecular catalytic oxidation is supposed for that species.  相似文献   

4.
The homoleptic 1,3-diphosphacyclobutadiene sandwich complex [Co(η4-1,3-P2C2tBu2)2] behaved as a versatile and highly flexible metalloligand toward Ni2+, Ru2+, Rh+, and Pd2+ cations, forming a range of unusual oligonuclear compounds. The reaction of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Ni2Cp3]BF4 initially afforded the σ-complex [CpNi{Co(η4-1,3-P2C2tBu2)2}(thf)] ( 2 ), which converted into [Co(η4-CpNi{1,3-P2C2tBu2PC})(η4-1,3-P2C2tBu2)] ( 3 ) below room temperature. The structure of 3 contains an unprecedented 1,4-diphospha-2-nickelacyclopentadiene moiety formed by an oxidative addition of a ligand P−C bond onto nickel. At elevated temperatures, 3 isomerized to [Co(η4-CpNi{1,4-P2C2tBu22P,P})(η4-1,3-P2C2tBu2)] ( 4 ), which features a 1,3-diphospha-2-nickelacyclopentadiene unit. Transmetalation of [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with [Cp*RuCl]4 (Cp*=C5Me5) afforded tetranuclear [(Cp*Ru)3(μ-Cl)2{Co(η4-1,3-P2C2tBu2)2}] ( 5 ), in which the [Co(η4-1,3-P2C2tBu2] anion acts as a chelate ligand toward Ru2+. The diphosphido complex [(Cp*Ru)2(μ,η2-P2)(μ,η2-C2tBu2)] ( 6 ) was formed as a byproduct. Pure compound 6 was isolated after prolonged heating of the reaction mixture. The reaction of [K(thf)2{Co(η4-1,3-P2C2R2)2}] (R=tBu; adamantyl, Ad) with [RhCl(cod)]2 (cod=1,5-cyclooctadiene) afforded unprecedented π-complexes [Rh(cod){Co(η4-1,3-P2C2R2)2}] ( 7 : R=tBu; 8 : R=Ad), in which one μ:η44-P2C2R2 ligand bridges two metal atoms. The pentanuclear complex [Pd3(PPh3)2{Co(η4-1,3-P2C2tBu2)2}2] ( 10 ), featuring a Pd3 chain and a rare 1,4-diphospha-2-butene ligand, was synthesized by reacting [K(thf)2{Co(η4-1,3-P2C2tBu2)2}] with cis-PdCl2(PPh3)2. The redox properties of selected compounds were analyzed by cyclic voltammetry, whereas DFT calculations gave additional insight into the electronic structures. The results of this study revealed several remarkable and previously unrecognized properties of the [Co(P2C2tBu2)2] anion.  相似文献   

5.
The half‐open rare‐earth‐metal aluminabenzene complexes [(1‐Me‐3,5‐tBu2‐C5H3Al)(μ‐Me)Ln(2,4‐dtbp)] (Ln=Y, Lu) are accessible via a salt metathesis reaction employing Ln(AlMe4)3 and K(2,4‐dtbp). Treatment of the yttrium complex with B(C6F5)3 and tBuCCH gives access to the pentafluorophenylalane complex [{1‐(C6F5)‐3,5‐tBu2‐C5H3Al}{μ‐C6F5}Y{2,4‐dtbp}] and the mixed vinyl acetylide complex [(2,4‐dtbp)Y(μ‐η13‐2,4‐tBu2‐C5H4)(μ‐CCtBu)AlMe2], respectively.  相似文献   

6.
A novel one‐pot method was developed for the preparation of [Ti(η5‐C5H5)(η7‐C7H7)] (troticene, 1 ) by reaction of sodium cyclopentadienide (NaCp) with [TiCl4(thf)2], followed by reduction of the intermediate [(η5‐C5H5)2TiCl2] with magnesium in the presence of cycloheptatriene (C7H8). The [n]troticenophanes 3 (n=1), 4 , 8 , 10 (n=2), and 11 (n=3) were synthesized by salt elimination reactions between dilithiated troticene, [Ti(η5‐C5H4Li)(η7‐C7H6Li)] ? pmdta ( 2 ) (pmdta=N,N′,N′,N′′,N′′‐pentamethyldiethylenetriamine), and the appropriate organoelement dichlorides Cl2Sn(Mes)2 (Mes=2,4,6‐trimethylphenyl), Cl2Sn2(tBu)4, Cl2B2(NMe2)2, Cl2Si2Me4, and (ClSiMe2)2CH2, respectively. Their structural characterization was carried out by single‐crystal X‐ray diffraction and multinuclear NMR spectroscopy. The stanna[1]‐ and stanna[2]troticenophanes 3 and 4 represent the first heteroleptic sandwich complexes bearing Sn atoms in the ansa bridge. The reaction of 3 with [Pt(PEt3)3] resulted in regioselective insertion of the [Pt(PEt3)2] fragment into the Sn? Cipso bond between the tin atom and the seven‐membered ring, which afforded the platinastanna[2]troticenophane 5 . Oxidative addition was also observed upon treatment of 4 with elemental sulfur or selenium, to produce the [3]troticenophanes [Ti(η5‐C5H4SntBu2)(η7‐C7H6SntBu2)E] ( 6 : E=S; 7 : E=Se). The B? B bond of the bora[2]troticenophane 8 was readily cleaved by reaction with [Pt(PEt3)3] to form the corresponding oxidative addition product [Ti(η5‐C5H4BNMe2)(η7‐C7H6BNMe2)Pt(PEt3)2] ( 9 ). The solid‐state structures of compounds 5 , 6 , and 9 were also determined by single‐crystal X‐ray diffraction.  相似文献   

7.
The Dihydridoiridium(III) Complex [IrH2Cl(P i Pr3)2] as a Molecular Building Block for Unsymmetrical Binuclear Rhodium–Iridium and Iridium–Iridium Compounds The title compound [IrH2Cl(PiPr3)2] ( 3 ) reacts with the chloro‐bridged dimers [RhCl(PiPr3)2]2 ( 1 ) and [IrCl(C8H14)(PiPr3)]2 ( 5 ) by cleavage of the Cl‐bridges to give the unsymmetrical binuclear complexes 4 and 6 with Rh(μ‐Cl)2Ir and Ir(μ‐Cl)2Ir as the central building block. The reactions of 3 with the bis(cyclooctene) and (1,5‐cyclooctadiene) compounds [MCl(C8H14)2]2 ( 7 , 8 ) and [MCl(η4‐C8H12)]2 ( 9 , 10 ) (M = Rh, Ir) occur analogously and afford the rhodium(I)‐iridium(III) and iridium(I)‐iridium(III) complexes 11 – 14 in 70–80% yield. Treatment of [(η4‐C8H12)M(μ‐Cl)2IrH2(PiPr3)2] ( 13 , 14 ) with phenylacetylene leads to the formation of the substitution products [(η4‐C8H12)M(μ‐Cl)2IrH(C≡CPh)(PiPr3)2] ( 15 , 16 ) without changing the central molecular core. Similarly, the compound [(η4‐C8H12)Rh(μ‐Br)2IrH(C≡CPh)(PiPr3)2] ( 18 ) has been prepared; it was characterized by X‐ray crystallography.  相似文献   

8.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVIII. Syntheses and Structures of [{η2tBu2P–P=P–PtBu2}Pt(PR3)2] tBu2P–P=P(Me)tBu2 reacts with [{η2‐C2H4} · Pt(PR3)2] as well as with [{η2tBu2P–P}Pt(PR3)2] yielding [{η2tBu2P–P=P–PtBu2}Pt(PR3)2]; PR3 = PMe3 3 a , PEtPh2 3 b , 1/2 dppe 3 c , PPh3 3 d , P(p‐Tol)3 3 e . All compounds are characterized by 1H and 31P NMR spectra, for 3 b and 3 d also crystal structure determinations were performed. 3 b crystallizes in the triclinic space group P1 (No. 2) with a = 1212.58(7), b = 1430.74(8), c = 1629.34(11) pm, α = 77.321(6), β = 70.469(5), γ = 87.312(6)°. 3 d crystallizes in the triclinic space group P1 (No. 2) with a = 1122.60(9), b = 1355.88(11), c = 2025.11(14) pm, α = 83.824(9), β = 82.498(9), γ = 67.214(8)°.  相似文献   

9.
The first example of NO insertion into a Bi?C bond has been found in the direct reaction of NO with a Bi3+ complex of the unusual (C6H2tBu2‐3,5‐O‐4)2? oxyaryl dianionic ligand, namely, Ar′Bi(C6H2tBu2‐3,5‐O‐4) [Ar′=2,6‐(Me2NCH2)2C6H3] ( 1 ). The oximate complexes [Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)]2(μ‐O) ( 3 ) and Ar′Bi(ONC6H2‐3,5‐tBu2‐4‐O)2 ( 4 ) were formed as a mixture, but can be isolated in pure form by reaction of NO with a Bi3+ complex of the [O2C(C6H2tBu2‐3‐5‐O‐4]2? oxyarylcarboxy dianion, namely, Ar′Bi[O2C(C6H2tBu2‐3‐5‐O‐4)‐κ2O,O’]. Reaction of 1 with Ph3CSNO gave an oximate product with (Ph3CS)1? as an ancillary ligand, (Ph3CS)(Ar′)Bi(ONC6H2‐3,5‐tBu2‐4‐O) ( 5 ).  相似文献   

10.
Treatment of [{Me2C6H(CH2PtBu2)2}Rh(η1‐N2)] ( 1a ) with molecular oxygen (O2) resulted in almost quantitative formation of the dioxygen adduct [{Me2C6H(CH2PtBu2)2}Rh(η2‐O2)] ( 2a ). An X‐ray diffraction study of 2a revealed the shortest O? O bond reported for Rh? O2 complexes, indicating the formation of a RhI? O2 adduct, rather than a cyclic RhIII η2‐peroxo complex. The coordination of the O2 ligand in 2a was shown to be reversible. Treatment of 2a with CO gas yielded almost quantitatively the corresponding carbonyl complex [{Me2C6H(CH2PtBu2)2}Rh(CO)] ( 3a ). Surprisingly, treatment of the structurally very similar pincer complex [{C6H3(CH2PiPr2)2)}Rh(η1‐N2)] ( 1b ) with O2 led to partial decomposition, with no dioxygen adduct being observed.  相似文献   

11.
Treatment of the biphenyl derivative [S=C{(NCH2But)2C6H3‐3,4}]2 or [Cl2Si{(NCH2But)2C6H3‐3,4}]2 with C8K afforded the new bis(carbene) 1 or the first bis(silylene) 2 , respectively. The X‐ray structure of 2 is presented.  相似文献   

12.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

13.
Reaction of [M(NH3)6]Cl3 (M = Co, Rh, Ir) and [Ir(NH3)5(OH2)]Cl3 with (NH4)2C2O4 · H2O in aqueous solution resulted in the isolation of [M(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively. The complexes have been characterized by X‐ray crystallography, IR and UV/VIS spectroscopy. The isomorphous compounds crystallize in the orthorhombic space group Pnnm (No. 58). Four molecules of crystal water are involved in an extended three‐dimensional hydrogen bonding network. The librational modes of the lattice water around 600 cm–1 allow the characterization of [Ir(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively, by IR spectroscopy. The band around 600 cm–1 shows a significant frequency shift in the IR spectra of the hexaammine and aquapentaammine complex of iridium(III) and, by that, a distinction is possible.  相似文献   

14.
Treatment of [Ir(bpa)(cod)]+ complex [ 1 ]+ with a strong base (e.g., tBuO?) led to unexpected double deprotonation to form the anionic [Ir(bpa?2H)(cod)]? species [ 3 ]?, via the mono‐deprotonated neutral amido complex [Ir(bpa?H)(cod)] as an isolable intermediate. A certain degree of aromaticity of the obtained metal–chelate ring may explain the favourable double deprotonation. The rhodium analogue [ 4 ]? was prepared in situ. The new species [M(bpa?2H)(cod)]? (M=Rh, Ir) are best described as two‐electron reduced analogues of the cationic imine complexes [MI(cod)(Py‐CH2‐N?CH‐Py)]+. One‐electron oxidation of [ 3 ]? and [ 4 ]? produced the ligand radical complexes [ 3 ]. and [ 4 ].. Oxygenation of [ 3 ]? with O2 gave the neutral carboxamido complex [Ir(cod)(py‐CH2N‐CO‐py)] via the ligand radical complex [ 3 ]. as a detectable intermediate.  相似文献   

15.
Mono‐ and Dinuclear Rhodium Complexes with Arsino(phosphino)methanes in Different Coordination Modes The cyclooctadiene complex [Rh(η4‐C8H12)(κ2tBu2AsCH2PiPr2)](PF6) ( 1a ) reacts with CO and CNtBu to give the substitution products [Rh(L)22tBu2AsCH2PiPr2)](PF6) ( 2 , 3 ). From 1a and Na(acac) in the presence of CO the neutral compound [Rh(κ2‐acac)(CO)(κ‐PtBu2AsCH2PiPr2)] ( 4 ) is formed. The reactions of 1a , the corresponding B(ArF)4‐salt 1b and [Rh(η4‐C8H12)(κ2iPr2AsCH2PiPr2)](PF6) ( 5 ) with acetonitrile under a H2 atmosphere affords the complexes [Rh(CH3CN)22‐R2AsCH2PiPr2)]X ( 6a , 6b , 7 ), of which 6a (R = tBu; X = PF6) gives upon treatment with Na(acac‐f6) the bis(chelate) compound [Rh(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 8 ). From 8 and CH3I a mixture of two stereoisomers of composition [Rh(CH3)I(κ2‐acac‐f6)(κ2tBu2AsCH2PiPr2)] ( 9/10 ) is generated by oxidative addition, and the molecular structure of the racemate 9 has been determined. The reactions of 1a and 5 with CO in the presence of NaCl leads to the formation of the “A‐frame” complexes [Rh2(CO)2(μ‐Cl)(μ‐R2AsCH2PiPr2)2](PF6) ( 11 , 12 ), which have been characterized crystallographically. From 11 and 12 the dinuclear substitution products [Rh2(CO)2(μ‐X)(μ‐R2AsCH2PiPr2)2](PF6) ( 13 ‐ 16 ) are obtained by replacing the bridging chloride for bromide, hydride or hydroxide, respectively. While 12 (R = iPr) reacts with NaI to give the related “A‐frame” complex 18 , treatment of 11 (R = tBu) with NaI yields the mononuclear chelate compound [RhI(CO)(κ2tBu2AsCH2PiPr2)] ( 20 ). The reaction of 20 with CH3I affords the acetyl complex [RhI2{C(O)CH3}(κ2tBu2AsCH2PiPr2)] ( 21 ) with five‐coordinate rhodium atom.  相似文献   

16.
Monophosphine‐o‐carborane has four competitive coordination modes when it coordinates to metal centers. To explore the structural transitions driven by these competitive coordination modes, a series of monophosphine‐o‐carborane Ir,Rh complexes were synthesized and characterized. [Cp*M(Cl)2{1‐(PPh2)‐1,2‐C2B10H11}] (M=Ir ( 1 a ), Rh ( 1 b ); Cp*=η5‐C5Me5), [Cp*Ir(H){7‐(PPh2)‐7,8‐C2B9H11}] ( 2 a ), and [1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 3 a ), Rh ( 3 b )) can be all prepared directly by the reaction of 1‐(PPh2)‐1,2‐C2B10H11 with dimeric complexes [(Cp*MCl2)2] (M=Ir, Rh) under different conditions. Compound 3 b was treated with AgOTf (OTf=CF3SO3?) to afford the tetranuclear metallacarborane [Ag2(thf)2(OTf)2{1‐(PPh2)‐3‐(η5‐Cp*)‐3,1,2‐RhC2B9H10}2] ( 4 b ). The arylphosphine group in 3 a and 3 b was functionalized by elemental sulfur (1 equiv) in the presence of Et3N to afford [1‐{(S)PPh2}‐3‐(η5‐Cp*)‐3,1,2‐MC2B9H10] (M=Ir ( 5 a ), Rh ( 5 b )). Additionally, the 1‐(PPh2)‐1,2‐C2B10H11 ligand was functionalized by elemental sulfur (2 equiv) and then treated with [(Cp*IrCl2)2], thus resulting in two 16‐electron complexes [Cp*Ir(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H9)] ( 6 a ) and [Cp*Ir(7‐{(S)PPh2}‐8‐S‐9‐OCH3‐7,8‐C2B9H9)] ( 7 a ). Compound 6 a further reacted with nBuPPh2, thereby leading to 18‐electron complex [Cp*Ir(nBuPPh2)(7‐{(S)PPh2}‐8‐S‐7,8‐C2B9H10)] ( 8 a ). The influences of other factors on structural transitions or the formation of targeted compounds, including reaction temperature and solvent, were also explored.  相似文献   

17.
The influence of the potentially chelating imino group of imine‐functionalized Ir and Rh imidazole complexes on the formation of functionalized protic N‐heterocyclic carbene (pNHC) complexes by tautomerization/metallotropism sequences was investigated. Chloride abstraction in [Ir(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 a ) (cod=1,5‐cyclooctadiene, Dipp=2,6‐diisopropylphenyl) with TlPF6 gave [Ir(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 a +[PF6]?). Plausible mechanisms for the tautomerization of complex 1 a to 3 a +[PF6]? involving C2?H bond activation either in 1 a or in [Ir(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 a +[PF6]?) were postulated. Addition of PR3 to complex 3 a +[PF6]? afforded the eighteen‐valence‐electron complexes [Ir(cod)(PR3){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 7 a +[PF6]? (R=Ph) and 7 b +[PF6]? (R=Me)). In contrast to Ir, chloride abstraction from [Rh(cod)Cl{C3H3N2(DippN=CMe)‐κN3}] ( 1 b ) at room temperature afforded [Rh(cod){C3H3N2(DippN=CMe)‐κN3}2]+[PF6]? ( 6 b +[PF6]?) and [Rh(cod){C3H3N2(DippN=CMe)‐κ2(C2,Nimine)}]+[PF6]? ( 3 b +[PF6]?) (minor); the reaction yielded exclusively the latter product in toluene at 110 °C. Double metallation of the azole ring (at both the C2 and the N3 atom) was also achieved: [Ir2(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 10 ) and the heterodinuclear complex [IrRh(cod)2Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 12 ) were fully characterized. The structures of complexes 1 b , 3 b +[PF6]?, 6 a +[PF6]?, 7 a +[PF6]?, [Ir(cod){C3HN2(DippN=CMe)(DippN=CH)(Me)‐κ2(N3,Nimine)}]+[PF6]? ( 9 +[PF6]?), 10? Et2O ? toluene, [Ir2(CO)4Cl{μ‐C3H2N2(DippN=CMe)‐κ2(C2,Nimine),κN3}] ( 11 ), and 12? 2 THF were determined by X‐ray diffraction.  相似文献   

18.
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa‐bridging elements. Their preparation was achieved by salt‐elimination reactions of the dilithiated precursor [Mn(η5‐C5H4Li)(η6‐C6H5Li)]?pmdta (pmdta=N,N,N′,N′,N′′‐pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single‐atom‐bridged derivatives, [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] and [Mn(η5‐C5H4)(η6‐C6H5)SiPh2], could also be determined by X‐ray structural analysis. We investigated for the first time the reactivity of these ansa‐cyclopentadienyl–benzene manganese compounds. The reaction of the distannyl‐bridged complex [Mn(η5‐C5H4)(η6‐C6H5)Sn2tBu4] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn?Sn bond to give a triatomic ansa‐bridge. The investigation of the ring‐opening polymerization (ROP) capability of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] with [Pt(PEt3)3] showed that an unexpected, unselective insertion into the Cipso?Sn bonds of [Mn(η5‐C5H4)(η6‐C6H5)SntBu2] had occurred.  相似文献   

19.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

20.
Oxidative addition of aryl bromides to 12‐electron [Rh(PiBu3)2][BArF4] (ArF=3,5‐(CF3)2C6H3) forms a variety of products. With p‐tolyl bromides, RhIII dimeric complexes result [Rh(PiBu3)2(o/p‐MeC6H4)(μ‐Br)]2[BArF4]2. Similarly, reaction with p‐ClC6H4Br gives [Rh(PiBu3)2(p‐ClC6H4)(μ‐Br)]2[BArF4]2. In contrast, the use of o‐BrC6H4Me leads to a product in which toluene has been eliminated and an isobutyl phosphine has undergone C? H activation: [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2. Trapping experiments with ortho‐bromo anisole or ortho‐bromo thioanisole indicate that a possible intermediate for this process is a low‐coordinate RhIII complex that then undergoes C? H activation. The anisole and thioanisole complexes have been isolated and their structures show OMe or SMe interactions with the metal centre alongside supporting agostic interactions, [Rh(PiBu3)2(C6H4O Me)Br][BArF4] (the solid‐state structure of the 5‐methyl substituted analogue is reported) and [Rh(PiBu3)2(C6H4S Me)Br][BArF4]. The anisole‐derived complex proceeds to give [Rh{PiBu2(CH2CHCH3C H2)}(PiBu3)(μ‐Br)]2[BArF4]2, whereas the thioanisole complex is unreactive. The isolation of [Rh(PiBu3)2(C6H4O Me)Br][BArF4] and its onward reactivity to give the products of C? H activation and aryl elimination suggest that it is implicated on the pathway of a σ‐bond metathesis reaction, a hypothesis strengthened by DFT calculations. Calculations also suggest that C? H bond cleavage through phosphine‐assisted deprotonation of a non‐agostic bond is also competitive, although the subsequent protonation of the aryl ligand is too high in energy to account for product formation. C? H activation through oxidative addition is also ruled out on the basis of these calculations. These new complexes have been characterised by solution NMR/ESIMS techniques and in the solid‐state by X‐ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号