首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
根据CR传输线模型和QR电路之间的关系,建立了拟合其初值的计算方法,借助Z-View软件,可求得各元件精确值.根据电容(Ci)和电阻(Ri)随特征频率(f*)的分布,推导了元件相对增量与恒相位角元件(Q)指数参数n的关系. 结果表明, 当n小于0.5时,Ci比Ri增加得更快,从新的角度说明了n的物理意义及其和界面脱层之间的关系.作为应用实例,拟合了不同特征的电化学阻抗谱,分析了有机涂层/金属腐蚀体系阻抗变化的具体过程,区分了点蚀和脱层因素对阻抗谱的影响,从高阻抗体系同时得到了与不同空隙率有关的涂层电容和电阻值,并根据涂层体系的不均匀特征探讨了模型结构的物理意义.  相似文献   

2.
合成了一种腈基功能化有机硅化合物3-氰乙基-二乙氧基-甲基硅烷(DESCN), 并对其化学结构和电化学窗口进行了表征. 采用恒流充放电、 扫描电子显微镜(SEM)、 X射线光电子能谱(XPS)及电化学阻抗谱(EIS)等方法研究了DESCN添加剂对LiFePO4电池低温性能的影响. 结果表明, DESCN化合物能够在电极表面参与形成更薄、 更均匀且致密的固体电解质界面(SEI)膜, 抑制电解液副反应的发生, 减小界面膜阻抗, 有利于低温下电极/电解液界面的Li+扩散和电荷转移, 从而提高LiFePO4电池的低温性能.  相似文献   

3.
锂离子电池的电化学阻抗谱分析   总被引:3,自引:0,他引:3  
电化学阻抗谱(EIS)是研究电极/电解质界面发生的电化学过程的最有力工具之一,广泛应用于研究锂离子在锂离子电池嵌合物电极活性材料中的嵌入和脱出过程。本文从分析嵌合物电极的EIS谱特征入手,探讨了电化学阻抗谱中各时间常数的归属问题,重点讨论了与锂离子嵌脱过程相关的动力学参数,如电荷传递电阻、活性材料的电子电阻、扩散以及锂离子扩散迁移通过固体电解质相界面膜(SEI膜)的电阻等,对电极极化电位和温度的依赖关系。  相似文献   

4.
以粗糙铜箔为基底,采用一步电沉积法获得Cu-Sn合金,X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相.扫描电子显微镜(SEM)测试结果表明该合金表面由大量"小岛"组成,且每个"小岛"上存在大量纳米合金粒子.充放电测试结果表明,以该合金为锂离子电池负极,其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh·g-1.电化学阻抗谱测试结果显示,Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧,并详细分析了它们的变化规律.  相似文献   

5.
电池浆料中颗粒状活性物质的粒度大小和分散均匀性对电池的内阻、 电压、 局部表面电流和总极化程度等性能有直接影响, 实现对其的在线实时测量对电池的质量控制具有重要意义. 基于电池浆料的高固含量、 高黏度和低透光性的特点, 本文利用超声衰减谱的方式测量了其粒度分布(PSD). 应用于电池浆料的粒度分布测量的最大难点是其利用超声衰减谱法预测粒度分布的模型需要难以获得的分散相和连续相的物性参数. 本文采用主成分分析(PCA)结合误差反向传播(BP)神经网络建立预测模型解决了超声衰减谱法的难点, 并引入遗传算法(GA)优化BP神经网络的初始阈值和权值. 通过以LiCoO2为活性物质的电池浆料进行了验证, 结果表明, PCA-GA-BP神经网络能够有效对不同固含量电池浆料的粒度分布进行预测, 预测值与真实值的峰形重合度高, 峰高偏差小, 两者的均方误差为0.1358, 拟合度(R2)为0.9816, 说明超声衰减谱法可作为测量电池浆料粒度分布的重要方式.  相似文献   

6.
用交流阻抗法研究BCX电池的性能   总被引:2,自引:0,他引:2  
研究Li/SOCl2电池和BCX电池贮存过程正极和负极的交流阻抗谱变化.结果表明,两种电池正、负电极的阻抗都随贮存时间的延长呈先增加而后大致稳定趋势,但如于电解液中添加BrCl,则可使该电极阻抗大大降低,Li电极的阻抗值比添加前降低了近一半,而玻碳电极的则从添加前的~100 kΩ降低到添加后的2kΩ左右;玻碳电极的阻抗值远大于Li电极,是电池的控制电极.  相似文献   

7.
锂离子电池电解液从制造完成到使用,一般都会经历灌装、运输和贮存的过程,了解长期贮存过程对锂离子电池电解液性能的影响,对锂离子电池的生产具有一定的理论指导意义.本文运用电化学阻抗谱(EIS)测试并结合循环伏安法(CV)测试、充放电测试、扫描电子显微镜(SEM)等研究了1 mol.L-1 LiPF6-EC:EMC 基础电解...  相似文献   

8.
借助电化学阻抗谱(EIS)和强度调制光电流谱(IMPS)/强度调制光电压谱(IMVS)技术, 采用不同纳米TiO2多孔薄膜对电极研究了染料敏化太阳电池(DSC)内部2个主要电荷输运过程的内在联系, 并探讨了载Pt材料对DSC界面动力学过程及电池宏观性能的影响机理. 借助等效电路模型分析了基于不同对电极材料电池的填充因子变化原因. 结果表明, 对电极材料的电极电荷交换过程制约光阳极膜内电子传输, 进而影响电池光伏性能; 同时对电极催化反应速率主要与催化剂活性、 载Pt材料电导率和催化反应面积有关.  相似文献   

9.
以粗糙铜箔为基底, 采用一步电沉积法获得Cu-Sn合金, X射线衍射(XRD)测试结果显示其主要为Cu6Sn5合金相. 扫描电子显微镜(SEM)测试结果表明该合金表面由大量“小岛”组成, 且每个“小岛”上存在大量纳米合金粒子. 充放电测试结果表明, 以该合金为锂离子电池负极, 其初始放电(嵌锂)和充电(脱锂)容量分别为461和405 mAh•g-1. 电化学阻抗谱测试结果显示, Cu6Sn5合金电极在阴极极化过程中分别出现了代表固体电解质界面膜(SEI膜)阻抗、电荷传递阻抗和相变阻抗的圆弧, 并详细分析了它们的变化规律.  相似文献   

10.
庄全超  杨梓  张蕾  崔艳华 《化学进展》2020,32(6):761-791
锂离子电池的电化学阻抗谱(EIS)是研究电化学系统最有力的实验方法之一,在过去的20多年中,EIS 被广泛应用于锂离子电池研究和生产领域,包括研究电极界面反应机理和容量衰减机制,测定相关电极过程动力学参数和电池的健康状态、荷电状态以及电池的内阻。本文分析了锂离子电池中电极极化过程包含的3 个基本物理化学过程———电子输运、离子输运和电化学反应过程,探讨了每一基本物理化学过程包含的步骤及其EIS 谱特征,详细论述了与电子输运相关的基本物理化学过程———接触阻抗和感抗产生的机制;介绍了多孔电极理论及其在锂离子电池中的应用,阐述了基于多孔电极理论进行阻抗谱数值模拟的建模原理与方法。 综述了石墨、硅、二元3d 过渡金属氧化物、LiCoO2、尖晶石LiMn2O4、LiFePO4、尖晶石Li4Ti5O12、过渡金属氟化物材料等电极的典型阻抗谱特征和各时间常数的归属问题。最后讨论了EIS现存的问题及未来的发展方向。  相似文献   

11.
孙秋霞 《化学研究》2010,21(4):80-83
电化学阻抗谱(EIS)是表征电化学体系特征及其过程机理的重要技术,但解谱模型不一致限制了其应用.为此,采用CR传输线模型中的8CRR等效电路拟合文献报道的杯[4,8,12]芳烃离子选择电极与Na+、Ca2+及Fe3+作用的EIS;并根据电荷转移电阻、表面吸附、扩散阻力和空间电荷层电容等不同特征,揭示了作用机理的共性与差异.结果表明,所采用的方法可操作性强,结果客观,具有一定的理论和应用价值.  相似文献   

12.
层状三元材料LiNi0.8Co0.15Al0.05O2(NCA)具有高能量密度和高比容量,在电动汽车领域占据重要地位.但是较差的容量保持率和热安全问题限制了其应用. 本文研究了18650型NCA/graphite(2.4 Ah)锂电池分区间循环容量衰退机理和热行为. 所考虑的荷电状态(state of charge,SOC)区间有0% ~ 20%(低)、20% ~ 70%(中)、70% ~ 100%(高)及0% ~ 100%(全)四个区间. 为了获得电池在不同SOC区间循环后衰减状况,以100个循环为一个周期,每个循环周期结束后,在25 oC下测试四个电池的基础特性,包括容量、容量增量(incremental capacity,IC)、电阻及电化学阻抗谱(electrochemical impedance spectroscopy, EIS),同时监测电池放电时的温度来讨论电池不同区间循环后的热行为. 测试结果表明,电池在全区间循环会降低电池寿命,而在非全区间循环的电池都能一定程度上减缓电池衰老的速度. 另外,全区间循环热特性最差而中端循环则表现出较好的热性能,对容量增量曲线分析发现,在高中低区间的性能衰退的主要原因是活性锂离子的损失,而在全区间还包括活性材料的损失和反应内阻的增大.  相似文献   

13.
An electronically conducting 3D network of reduced graphene oxide (RGO) was introduced into LiNi(1/3)Mn(1/3)Co(1/3)O(2) (LNMC) cathode material in a special nano/micro hierarchical structure. The rate test and cycling measurement showed that the hierarchical networks remarkably improve the high rate performance of LNMC electrode for lithium-ion batteries. The effect of RGO conducting networks on kinetic property was investigated by electrochemical impedance spectroscopy (EIS) and potentiostatic intermittent titration (PITT). The EIS results reveal that the RGO network greatly decreases the resistance of lithium batteries, especially the charge transfer resistance which can be attributed to the significantly improved conducting networks. The enhancement of apparent diffusion coefficient by the RGO conducting networks is shown by PITT. The power performance was found to be limited by the electrical conduction in the two-phase region, which can be greatly facilitated by the hierarchical RGO network together with carbon black. The as-obtained LNMC/RGO cathode exhibits an outstanding electrochemical property supporting the design idea of electronically conducting 3D networks for the high-energy and high-power lithium-ion batteries.  相似文献   

14.
设计并制作了大面积高效全柔性染料敏化太阳能电池(DSCs).通过引入光散射层或施加机械压力,DSCs的光电转化效率有了大幅度提高.实验室小面积(0.4 cm×0.4 cm)柔性DSCs的光电转化效率达到5.50%.大面积(2 cm×3 cm,活性面积为2.7 cm2)DSCs的光电转化效率从未进行处理的1.52%上升到1.81%和2.50%,分别提高了20.0%和66.7%.5 cm×7 cm面积的DSCs(活性面积为16.2 cm2)的光是转化效率在未做任何优化处理的条件下达到了1.60%(光强40 mW·cm-2).同时,本文对提高光电转化效率的机理进行了深入研究.电化学阻抗测试结果表明,加压法能明显减小电池的内部串联电阻(Rs)及TiO2/染料/电解液界面间的传荷电阻(Rct).扫描电镜结果也显示加压后TiO2粒子之间粘结更加紧密,更利于电子在TiO2薄膜中的传输及染料的吸附.另外,900 h的长期稳定性实验结果表明,制作的柔性DSCs的各项光电性能参数均无明显下降.该实验结果为柔性染料敏化太阳能电池的基础研究和大面积产业化技术研究奠定了基础.  相似文献   

15.
0引言制作高功率的卷绕式铅酸蓄电池,目前日益受到广泛关注。薄型极板是卷绕式铅酸蓄电池的显著特点之一。很薄的极板决定着卷绕式铅酸电池的优良性能。制造薄极板的前提是要先制得薄板栅。卷绕式铅酸蓄电池的板栅一方面要起到传统板栅支撑活物质与作为导电电极的作用,另一方面要求这种合金制成板栅后可以卷绕,所以硬度与脆性不能太大。此板栅一般要加工成厚度为0.2 ̄0.5mm的铅箔。而有报道制得更薄的板栅,厚度达到0.05 ̄0.08mm,可以说做到了薄如纸[1]。制作这样薄的板栅一般采用压延的方式,首先的问题就是选择何种合金材料,然后是其电化学…  相似文献   

16.
为了满足食品及医药等领域的检测需求,研制了黄芩素纯度标准物质。采用液相色谱–质谱法和红外光谱法对黄芩素纯度标准物质原料定性后,利用高效液相色谱法(HPLC)和定量核磁技术(Quantitative Nuclear Magnetic Resonance Spectroscopy,QNMR)对黄芩素的纯度进行了定值,并用HPLC法对黄芩素纯度标准物质进行了均匀性检验和稳定性考察。对定值结果的不确定度进行了评价,研制的黄芩素纯度标准物质的定值结果和扩展不确定度分别为98.8%,0.8%(k=2)。  相似文献   

17.
将聚苯乙烯磺酸(PSS)进行锂化处理后, 涂覆在锂箔表面, 在锂金属表面构筑一层均匀的聚苯乙烯磺酸锂(PSSLi)界面保护层, 形成PSSLi@Li复合电极. 通过红外光谱(FTIR)、 电化学阻抗谱(EIS)、 电池性能分析和有限元多物理场仿真模拟等方法, 对该复合电极进行了结构和性能研究. 结果表明, PSSLi界面保护层能有效地避免电解液与锂金属的直接接触, 抑制了“死锂”和锂枝晶的生成. 聚苯乙烯磺酸锂具有整齐排布的磺酸基团, 为锂离子提供了稳定的传输通道, 能够均匀化锂离子的迁移速率, 调节锂离子在电极表面的浓度分布, 并实现均匀的锂金属沉积/剥离. 电化学实验数据表明, 将该PSSLi界面层涂覆在铜箔表面进行库仑效率测试, 循环 350次实验后仍然能够保持在99.5%以上; 利用PSSLi@Li复合电极组装形成的对称电池, 在1 mA/cm2的电流密度、 1 mA·h/cm2的面积容量下, 能够稳定循环1200 h以上; PSSLi@Li与磷酸铁锂正极材料组装的全电池, 在1C倍率下循环500次后, 仍具有115 mA·h/g的容量, 容量保持率可达81%以上; 在8C的高倍率下, 该电池的容量可达到105 mA·h/g.  相似文献   

18.
现有的以石墨为负极的锂离子电池能量密度逐渐接近其理论极限. 基于合金化反应机制的高容量含锂负极材料LixMy(M为能够和锂发生合金化反应的元素)是一类新兴的负极材料, 具有数倍于石墨的储锂比容量, 且可以为电池提供活性锂源. 这些特性使其能够与高容量无锂正极材料(如S, O2, FeF3和V2O5等)相匹配, 构建下一代高比能锂离子电池新体系. 本文综述了近年来高容量合金基含锂负极材料(如LixSi, LixSn, Li3P和LixAl基系列材料)的研究进展, 分析了所面临的挑战, 概述了材料的合成与电极的制备方法, 并介绍了它们在常规锂离子电池、 锂离子-硫电池及锂离子-空气电池等多个全电池体系中的应用实例, 提出并举证了其电化学性能优化与调控的策略, 最后展望了未来的研究方向.  相似文献   

19.
采用葡萄糖水热碳化法合成了一系列碳层包覆的NiFe2O4核壳八面体(NiFe2O4@C). 通过调控葡萄糖的含量可以有效控制NiFe2O4表面包覆的碳层厚度. 利用X射线衍射(XRD)、 拉曼光谱(Roman)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等对NiFe2O4@C的组成、 结构、 形貌和光学性能进行了表征. 考察了表面水热碳层对NiFe2O4光催化降解亚甲基蓝(MB)性能的影响. 结果表明, NiFe2O4的光催化活性很大程度上依赖于在其表面包覆的碳层厚度, 碳层厚度为5.5 nm的NiFe2O4@C-3展现了最佳的光催化活性. 荧光光谱(PL)、 瞬态光电流和电化学阻抗谱(EIS)表征结果证明, NiFe2O4@C的光催化性能的提升归因于在NiFe2O4核和碳壳之间形成了异质结, 有效地促进了光生载流子的传输和分离效率. NiFe2O4@C复合材料展现了较好的稳定性和可回收性, 在污水处理方面有很大的应用潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号