首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sensitive, integrated top-down liquid chromatography/mass spectrometry (LC/MS) approach, suitable for the near complete characterization of specific proteins in complex protein mixtures, such as inclusion bodies of an E. coli lysate, has been successfully developed using a hybrid linear ion trap/Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. In particular, human growth hormone (hGH) (200 fmol) was analyzed with high sequence coverage (>95%), including the sites of disulfide linkages. The high mass accuracy and resolution of the FTICR mass spectrometer was used to reveal high charge state ions of hGH (22 kDa). The highly charged intact protein ions (such as the 17+ species) were captured and fragmented in the linear ion trap cell. The fragment ions from MS/MS spectra were then successfully analyzed in the FTICR cell in an on-line LC/MS run. Peptide fragments from the N-terminal and C-terminal regions, as well as large interior fragments, were captured and identified. The results allowed the unambiguous assignment of disulfide bonds Cys53-Cys165 and Cys182-Cys189, indicative of proper folding of hGH. The disulfide bond assignments were also confirmed by analysis of the tryptic digest of a sample of hGH purified from inclusion bodies. On-line LC/MS with the linear ion trap/FTICR yields high mass accuracy in both the MS and MS/MS modes (within 2 ppm with external calibration). The approach should prove useful in biotechnology applications to characterize correctly folded proteins, both in the early protein expression and the later processed stages, using only a single automated on-line LC/MS top-down method.  相似文献   

2.
The D‐galactose‐H+ symport protein, GalP, of Escherichia coli is the bacterial homologue of the human glucose transport protein, GLUT1. Here we demonstrate that mass spectrometry can be used to map modification by covalently bound reagents, and also to detect structural changes in the GalP protein that occur upon substrate binding. The small thiol‐group‐specific reagent N‐ethylmaleimide (NEM) was used to modify the cysteine residues in GalP(His)6 both alone and in the presence of D‐glucose, a known substrate. Employing a mixture of proteolysis and thermal degradation methods, the three cysteine residues were found to undergo sequential reactions with NEM, with Cys374 being modified first, followed by Cys389 and finally Cys19, thus indicating their different accessibilities within the three‐dimensional structure of the protein. Prior binding of the substrate D‐glucose to the protein protected Cys19 and Cys374 against NEM modification, but not Cys389. Cys374 had been expected to be shielded by D‐glucose binding while Cys389 had been expected to be unaffected, consistent with their proposed respective locations in the vicinity of, and distant from, the sugar binding site. However, the inaccessibility of Cys19 was unexpected and suggests a structural change in the protein promoted by D‐glucose binding which changes the proximity of Cys19 with respect to the D‐glucose‐binding site. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
“Native” mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains. Figure
?  相似文献   

4.
Oxidative stress plays an important role in the development of various disease processes and is a putative mechanism in the development of bronchopulmonary dysplasia, the most common complication of extreme preterm birth. Glutathione, a major endogenous antioxidant and redox buffer, also mediates cellular functions through protein thiolation. We sought to determine if post‐translational thiol modification of hemoglobin F occurs in neonates by examining erythrocyte samples obtained during the first month of life from premature infants, born at 23 0/7 – 28 6/7 weeks gestational age, who were enrolled at our center in the Prematurity and Respiratory Outcomes Program (PROP). Using liquid chromatography‐mass spectrometry (LC‐MS), we report the novel finding of in vivo and in vitro glutathionylation of γG and γA subunits of Hgb F. Through tandem mass spectrometry (nanoLC‐MS/MS), we confirmed the adduction site as the Cys‐γ94 residue and through high‐resolution mass spectrometry determined that the modification occurs in both γ subunits. We also identified glutathionylation of the β subunit of Hgb A in our patient samples; we did not find modified α subunits of Hgb A or F. In conclusion, we are the first to report that glutathionylation of γG and γA of Hgb F occurs in premature infants. Additional studies of this post‐translational modification are needed to determine its physiologic impact on Hgb F function and if sG‐Hgb is a biomarker for clinical morbidities associated with oxidative stress in premature infants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The rhytidenone family comprises spirobisnaphthalene natural products isolated from the mangrove endophytic fungus Rhytidhysteron rufulum AS21B. The biomimetic synthesis of rhytidenone A was achieved by a Michael reaction/aldol/lactonization cascade in a single step from the proposed biosynthetic precursor rhytidenone F. Moreover, the mode of action of the highly cytotoxic rhytidenone F was investigated. The pulldown assay coupled with mass spectrometry analysis revealed the target protein PA28γ is covalently attached to rhytidenone F at the Cys92 residue. The interactions of rhytidenone F with PA28γ lead to the accumulation of p53, which is an essential tumor suppressor in humans. Consequently, the Fas-dependent signaling pathway is activated to initiate cellular apoptosis. These studies have identified the first small-molecule inhibitor targeting PA28γ, suggesting rhytidenone F may serve as a promising natural product lead for future anticancer drug development.  相似文献   

6.
N-terminal Cys modification has been intensively studied to produce homogeneous bioconjugates essentially through two modes of reaction: reversible modification with the equilibrium shifted towards the formation of the desired conjugate or stable and irreversible conjugates. Herein, we report a new method of N-terminal cysteine modification using O-salicylaldehyde esters (OSAEs) through fast conjugation and irreversible deconjugation. These reagents can rapidly react with N-terminal Cys at low-micromolar concentration to form thiazolidines with subsequent hydrolysis of the ester moiety to the phenolic derivative. These phenolic thiazolidines can be hydrolyzed at acidic pH (≈4.5) to recover the intact N-terminal Cys. Bioconjugation reactions using OSAEs offer controlled reversibility to as act as a protecting group for N-terminal cysteines, allowing the modification of in-chain residues without perturbing the N-terminal Cys, which can then be deprotected and used as a conjugation site.  相似文献   

7.
We report here an affinity-proteomics approach that combines 2D-gel electrophoresis and immunoblotting with high performance mass spectrometry to the identification of both full length protein antigens and antigenic fragments of Chlamydophila pneumoniae (C. pneumoniae). The present affinity-mass spectrometry approach effectively utilized high resolution FTICR mass spectrometry and LC-tandem-MS for protein identification, and enabled the identification of several new highly antigenic C. pneumoniae proteins that were not hitherto reported or previously detected only in other Chlamydia species, such as Chlamydia trachomatis. Moreover, high resolution affinity-MS provided the identification of several neo-antigenic protein fragments containing N- and C-terminal, and central domains such as fragments of the membrane protein Pmp21 and the secreted chlamydial proteasome-like factor (Cpaf), representing specific biomarker candidates.  相似文献   

8.
Covalent adduction of the model protein apomyoglobin by 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation, was characterized by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The high mass resolving power and mass measurement accuracy of the instrument facilitated a detailed compositional analysis of the complex reaction product without the need for deconvolution and transformation to clearly show the pattern of adduction and component molecular weights. Our study has also demonstrated the value of electron capture dissociation over collision-induced dissociation for the tandem mass spectrometric determination of site modification for the 4-hydroxy-2-nonenal adduct of oxidized insulin B chain as an example. Figure FTICR allowed characterization of 4-hydroxy-2-nonenal (HNE)-modified apomyoglobin (an expanded spectrum of the +15 charge state is shown)  相似文献   

9.
The rhytidenone family comprises spirobisnaphthalene natural products isolated from the mangrove endophytic fungus Rhytidhysteron rufulum AS21B. The biomimetic synthesis of rhytidenone A was achieved by a Michael reaction/aldol/lactonization cascade in a single step from the proposed biosynthetic precursor rhytidenone F. Moreover, the mode of action of the highly cytotoxic rhytidenone F was investigated. The pulldown assay coupled with mass spectrometry analysis revealed the target protein PA28γ is covalently attached to rhytidenone F at the Cys92 residue. The interactions of rhytidenone F with PA28γ lead to the accumulation of p53, which is an essential tumor suppressor in humans. Consequently, the Fas‐dependent signaling pathway is activated to initiate cellular apoptosis. These studies have identified the first small‐molecule inhibitor targeting PA28γ, suggesting rhytidenone F may serve as a promising natural product lead for future anticancer drug development.  相似文献   

10.
We have developed and implemented a novel mass spectrometry (MS) platform combining the advantages of high mass accuracy and resolving power of Fourier transform ion cyclotron resonance (FTICR) with the economy and speed of multiple ion traps for tandem mass spectrometry. The instruments are integrated using novel algorithms and software and work in concert as one system. Using chromatographic time compression, a single expensive FTICR mass spectrometer can match the throughput of multiple relatively inexpensive ion trap instruments. Liquid chromatography (LC)-mass spectrometry data from the two types of spectrometers are aligned and combined to hybrid datasets, from which peptides are identified using accurate mass from the FTICR data and tandem mass spectra from the ion trap data. In addition, the high resolving power and dynamic range of a 12 tesla FTICR also allows precise label-free quantitation. Using two ion traps in parallel with one LC allows simultaneous MS/MS experiments and optimal application of collision induced dissociation and electrontransfer dissociation throughout the chromatographic separation for increased proteome coverage, characterization of post-translational modifications and/or simultaneous measurement in positive and negative ionization mode. An FTICR-ion trap cluster can achieve similar performance and sample throughput as multiple hybrid ion trap-FTICR instruments, but at a lower cost. We here describe the first such FTICR-ion trap cluster, its performance and the idea of chromatographic compression.  相似文献   

11.
Modification of proteins by 4‐hydroxy‐2‐nonenal (HNE), a reactive by‐product of ω6 polyunsaturated fatty acid oxidation, on specific amino acid residues is considered a biomarker for oxidative stress, as occurs in many metabolic, hereditary, and age‐related diseases. HNE modification of amino acids can occur either via Michael addition or by formation of Schiff‐base adducts. These modifications typically occur on cysteine (Cys), histidine (His), and/or lysine (Lys) residues, resulting in an increase of 156 Da (Michael addition) or 138 Da (Schiff‐base adducts), respectively, in the mass of the residue. Here, we employed biochemical and mass spectrometry (MS) approaches to determine the MS “signatures” of HNE‐modified amino acids, using lysozyme and BSA as model proteins. Using direct infusion of unmodified and HNE‐modified lysozyme into an electrospray quadrupole time‐of‐flight mass spectrometer, we were able to detect up to seven HNE modifications per molecule of lysozyme. Using nanoLC‐MS/MS, we found that, in addition to N‐terminal amino acids, Cys, His, and Lys residues, HNE modification of arginine (Arg), threonine (Thr), tryptophan (Trp), and histidine (His) residues can also occur. These sensitive and specific methods can be applied to the study of oxidative stress to evaluate HNE modification of proteins in complex mixtures from cells and tissues under diseased versus normal conditions.  相似文献   

12.
(?)‐Epigallocatechin gallate (EGCG) is a major bioactive component in leaves of green tea, and has been widely investigated for its anti‐tumor activity. The interaction between EGCG and the key peptides or proteins (e.g. glutathione, enzymes) in vivo is thought to be involved in the toxicity and anti‐cancer mechanism of EGCG. However, the true anti‐tumor mechanism of EGCG is not clear, and few studies have focused on the reactivity of EGCG toward peptides or proteins under physiological conditions (pH 7.4, 37°C). In this work, the covalent interactions between EGCG and model peptides containing one or more nucleophilic residues (i.e. Arg, Cys, Met, and α‐NH2 of the N‐terminus of peptides) under physiological condition were fully characterized using mass spectrometry. It was found that EGCG can react with the thiol groups of peptides to form adducts under physiological conditions (pH 7.4, 37°C), even in the absence of the peroxidase/hydrogen peroxide system. Besides the thiol groups of peptides, it is firstly reported that EGCG also reacts with α‐NH2 of the N‐terminus or arginine residues of model peptides to form Schiff base adducts, and the methionine residues of model peptides can be easily oxidized by hydrogen peroxide (H2O2) generated during the process of EGCG auto‐oxidation to form methionine sulfoxide products. The preference for the reaction of nucleophlic residues of peptides with EGCG was determined to have the following order: Cys > α‐NH2 of the N‐terminus > Arg. The neutral loss ions of [M+H–170]+ and [M+H‐138]+ were detected in all tandem mass spectra of the EGCG adducts of peptides, which indicates that these two neutral loss ions can be considered as the characteristic neutral loss ions of peptides modified by EGCG. Results of the present research provide insights into the toxicology and anti‐tumor mechanism of EGCG in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Covalent labeling along with mass spectrometry is a method that is increasingly used to study protein structure. Recently, it has been shown that diethylpyrocarbonate (DEPC) is a powerful labeling reagent because it can modify up to 30% of the residues in the average protein, including the N-terminus, His, Lys, Tyr, Ser, Thr, and Cys residues. We recently discovered, however, that Cys residues that form disulfide bonds appear to be modified by DEPC as well. In this work, we demonstrate that disulfide linked Cys residues are not actually reactive with DEPC but, instead, once reduced, free Cys residues can capture a carbethoxy group from other modified amino acids via a solution-phase reaction that can occur during the protein digestion step. This “scrambling” of carbethoxy groups decreases the amount of modification observed at other residues and can potentially provide incorrect protein structural information. Fortunately, label scrambling can be completely avoided by alkylating the free thiols after disulfide reduction.  相似文献   

14.
Human recombinant, baculovirus‐expressed p53 protein focuses on 2D gels in multiple spots in the narrow pI range. Re‐electrophoresis of the individual spots resulted in the appearance of multiple spots. The strings of spots were neither species specific, nor characteristic for baculovirus‐expressed p53. Moreover, mutant p53 did not deviate from wild‐type p53, indicating that this is an inherent property of p53. Okadaic acid treatment of insect cells, phosphate substitution reaction of purified p53, and individual analysis of all spots by mass spectrometry revealed that only a fraction of the recombinant p53 is phosphorylated. This finding excluded that the individual p53 spots in 2D gels reflect charge isomers generated by phosphorylation, but rather suggest that they are due to conformational flexibility of urea‐denatured monomeric p53 molecules or deamidation of asparagine and glutamine residues. The latter possibility was confirmed by NanoLC‐ESI MS/MS analysis. Our data provide a putative hint for a novel regulatory level for function and stability of p53, particularly the long‐lived mutant p53 overexpressed in diverse tumor types.  相似文献   

15.
Non-ribosomal peptides are bio synthesized using a range of enzymes that allow much more structural variability compared with “normal” peptides. Deviations from the standard amino acid structures are common features of this diverse class of natural products, making sequencing a challenging process. FTICR mass spectrometry, specifically the complementary tandem mass spectrometry techniques collision activated dissociation (CAD) and electron induced dissociation (EID), have been used to reveal structural information on the non-ribosomal peptide actinomycin D. EID was also combined with a multiple ion isolation method in order to provide an accurate (sub-ppm) internal calibration for the product ions. EID has been found to produce more detailed, complementary data than CAD for actinomycin D, with additional information being provided through fragmentation of the sodium and lithium adducts. Furthermore, the use of isolation in the FTICR cell was found to increase product ion intensities relative to the precursor ion, enabling significantly more peaks to be detected than when using EID alone. The combination of multiple ion isolation with EID, therefore, enables an accurate internal calibration of the fragment ions to be made (average mass uncertainty of <0.3 ppm), as well as increasing the degree of fragmentation of the compound, resulting in detailed structural information.   相似文献   

16.
Laser desorption/ionisation of discrete molecular clusters combined with time-of-flight (TOF) or Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry affords spectra in which extensive higher mass clusters are observed. The size of the largest cluster aggregates (or supraclusters) is of the same order of magnitude as nanoclusters. The spectra obtained using TOF mass spectrometry sometimes exhibit post-source decay fragmentation, depending upon the operational conditions employed during data acquisition, which, although providing useful data on the ligand dissociation dynamics, complicate spectral interpretation. Complementary FTICR mass spectra are free of such features. The identities of the supra/nanoclusters generated from the molecular cluster precursors have not been conclusively established but are mostly coordinatively unsaturated. Density functional molecular orbital calculations have identified the possible structures of the comparatively simple electronically unsaturated system, [Ru3(CO)6], that provides a clue to the aggregation mechanism.  相似文献   

17.
Mechanistic aspects of an unusual gas‐phase reaction of [LaCH2]+ with halobenzenes have been investigated using Fourier‐transform ion cyclotron resonance (FTICR) mass spectrometry combined with density functional theory (DFT) calculations. In this thermal process a carbon‐atom from the benzene ring, most likely the ipso‐position, and the carbene ligand are coupled to form C2H2.  相似文献   

18.
The physiological response of the human body to several diseases can be reflected by the metabolite pattern in biological fluids. Cancer, like other diseases accompanied by metabolic disorders, causes characteristic effects on cell turnover rate, activity of modifying enzymes, and RNA/DNA modifications. This results in an altered excretion of modified nucleosides and biochemically related compounds. In the course of our metabolic profiling project, we screened 24-h urine of patients suffering from lung, rectal, or head and neck cancer for previously unknown ribosylated metabolites. Therefore, we developed a sample preparation procedure based on boronate affinity chromatography followed by additional prepurification with preparative TLC. The isolated metabolites were analyzed by ion trap mass spectrometry (IT MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). IT MS was applied for LC-auto MS3 screening runs and MS n(n=4–6) syringe pump infusion experiments, yielding characteristic fragmentation patterns. FTICR MS measurements enabled the calculation of corresponding molecular formulae based on accurate mass determination (mass accuracy: 1–5 ppm for external and sub-ppm values for internal calibration). We were able to identify 22 metabolites deriving from cellular RNA metabolism and related metabolic pathways like histidine metabolism, purine biosynthesis, methionine/polyamine cycle, and nicotinate/nicotinamide metabolism. The compounds 1-ribosyl-3-hydroxypyridinium, 1-ribosyl-pyridinium, and 3-ribosyl-1-methyl-l-histidinium as well as a series of ribosylated histamines, conjugated to carboxylic acids at the Nω-position were found as novel urinary constituents. The occurrence of the modified nucleosides 2-methylthio-N 6-(cis-hydroxyisopentenyl)-adenosine, 5-methoxycarbonylmethyl-2-thiouridine, N 6-methyl-N 6-threonylcarbamoyladenosine, and 2-methylthio-N 6-threonylcarbamoyladenosine in human urine is verified for the first time.  相似文献   

19.
A method is described for identifying intact proteins from genomic databases using a combination of accurate molecular mass measurements and partial amino acid content. An initial demonstration was conducted for proteins isolated from Escherichia coli (E. coli) using a multiple auxotrophic strain of K12. Proteins extracted from the organism grown in natural isotopic abundance minimal medium and also minimal medium containing isotopically labeled leucine (Leu-D10), were mixed and analyzed by capillary isoelectric focusing (CIEF) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The incorporation of the isotopically labeled Leu residue has no effect on the CIEF separation of the protein, therefore both versions of the protein are observed within the same FTICR spectrum. The difference in the molecular mass of the natural isotopic abundance and Leu-D10 isotopically labeled proteins is used to determine the number of Leu residues present in that particular protein. Knowledge of the molecular mass and number of Leu residues present can be used to unambiguously identify the intact protein. Preliminary results show the efficacy of this method for unambiguously identifying proteins isolated from E. coli.  相似文献   

20.
Electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been used to characterize heterotetrameric corynebacterial sarcosine oxidase. By using a conventional quadrupole mass spectrometer, no spectra for the intact complex could be obtained (i. e., electrospraying protein at neutral pH), but spectra showing the four protein subunits were obtained when electrospraying from acidic solution. Initial low resolution ESI-FTICR mass spectra of the intact heterotetramer revealed a typical narrow charge state distribution in the range 6000 < m/z < 9000, consistent with retention of a compact structure in the gas phase, and gave a mass measurement about 1000 u higher than predicted. Efficient in-trap clean up, based upon low energy collisionally induced dissociation of adducts, allowed significant improvement in mass measurement accuracy. The present results represent the largest heteromultimeric protein complex successfully analyzed using FTICR mass spectrometry, and clearly illustrate the importance of sample clean up methods for large molecule characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号