首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The convergence of the dynamics of classical projection to the dynamics of the classical limit is investigated for 0. A mistake from a previous paper is pointed out, and the correct version of the result is given. A new, similar result is presented if the function generating the Hamiltonian of both the classical projection and the classical limit is a polynomial.  相似文献   

2.
The decoherence process is analyzed for an open quantum system that is classically chaotic, with a classical linear frequency entropy developed to measure the stability of classical motion. Investigation shows that the decoherence measured by the rate of quantum linear entropy production varies significantly with both the underlying classical orbits and the classical linear frequency entropy. Such correspondence is also supported by the further investigation on the Loschmidt Echo.  相似文献   

3.
In a recent article (Wiseman in New J. Phys. 9:165, 2007), Wiseman has proposed the use of so-called weak measurements for the determination of the velocity of a quantum particle at a given position, and has shown that according to quantum mechanics the result of such a procedure is the Bohmian velocity of the particle. Although Bohmian mechanics is empirically equivalent to variants based on velocity formulas different from the Bohmian one, and although it has been proven that the velocity in Bohmian mechanics is not measurable, we argue here for the somewhat paradoxical conclusion that Wiseman’s weak measurement procedure indeed constitutes a genuine measurement of velocity in Bohmian mechanics. We reconcile the apparent contradictions and elaborate on some of the different senses of measurement at play here.  相似文献   

4.
A unified treatment of the 2 × 2 analog of the Freudenthal–Tits magic square of Lie groups is given, providing an explicit representation in terms of matrix groups over composition algebras.  相似文献   

5.
Random billiards are billiard dynamical systems for which the reflection law giving the post-collision direction of a billiard particle as a function of the pre-collision direction is specified by a Markov (scattering) operator P. Billiards with microstructure are random billiards whose Markov operator is derived from a “microscopic surface structure” on the boundary of the billiard table. The microstructure in turn is defined in terms of what we call a billiard cellQ, the shape of which completely determines the operator P. This operator, defined on an appropriate Hilbert space, is bounded self-adjoint and, for the examples considered here, a Hilbert-Schmidt operator. A central problem in the statistical theory of such random billiards is to relate the geometric characteristics of Q and the spectrum of P. We show, for a particular family of billiard cell shapes parametrized by a scale invariant curvature K (Fig. 2), that the billiard Laplacian PI is closely related to the ordinary spherical Laplacian, and indicate, by partly analytical and partly numerical means, how this provides asymptotic information about the spectrum of P for small values of K. It is shown, in particular, that the second moment of scattering about the incidence angle closely approximates the spectral gap of P.  相似文献   

6.
A motivation is given for expressing classical mechanics in terms of diagonal projection matrices and diagonal density matrices. Then quantum mechanics is seen to be a simple generalization in which one replaces the diagonal real matrices with suitable Hermitian matrices.  相似文献   

7.
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle’s configurations evolve in space-time in terms of a parameter σ with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of σ is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter σ is shown to tend to the particle’s proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by σ as the dynamical temporal parameter.  相似文献   

8.
In 1960–1962, E. Kähler enriched É. Cartan’s exterior calculus, making it suitable for quantum mechanics (QM) and not only classical physics. His “Kähler-Dirac” (KD) equation reproduces the fine structure of the hydrogen atom. Its positron solutions correspond to the same sign of the energy as electrons. The Cartan-Kähler view of some basic concepts of differential geometry is presented, as it explains why the components of Kähler’s tensor-valued differential forms have three series of indices. We demonstrate the power of his calculus by developing for the electron’s and positron’s large components their standard Hamiltonian beyond the Pauli approximation, but without resort to Foldy-Wouthuysen transformations or ad hoc alternatives (positrons are not identified with small components in K ähler’s work). The emergence of negative energies for positrons in the Dirac theory is interpreted from the perspective of the KD equation. Hamiltonians in closed form (i.e. exact through a finite number of terms) are obtained for both large and small components when the potential is time-independent. A new but as yet modest new interpretation of QM starts to emerge from that calculus’ peculiarities, which are present even when the input differential form in the Kähler equation is scalar-valued. Examples are the presence of an extra spin term, the greater number of components of “wave functions” and the non-association of small components with antiparticles. Contact with geometry is made through a Kähler type equation pertaining to Clifford-valued differential forms.  相似文献   

9.
Koopman-von Neumann in the 30’s gave an operatorial formulation of Classical Mechanics. It was shown later on that this formulation could also be written in a path-integral form. We will label this functional approach as CPI (for classical path-integral) to distinguish it from the quantum mechanical one, which we will indicate with QPI. In the CPI two Grassmannian partners of time make their natural appearance and in this manner time becomes something like a three dimensional supermanifold. Next we introduce a metric in this supermanifold and show that a particular choice of the supermetric reproduces the CPI while a different one gives the QPI.  相似文献   

10.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

11.
In this paper, I argue that the Shrapnel–Costa no-go theorem undermines the last remaining viability of the view that the fundamental ontology of quantum mechanics is essentially classical: that is, the view that physical reality is underpinned by objectively real, counterfactually definite, uniquely spatiotemporally defined, local, dynamical entities with determinate valued properties, and where typically ‘quantum’ behaviour emerges as a function of our own in-principle ignorance of such entities. Call this view Einstein–Bell realism. One can show that the causally symmetric local hidden variable approach to interpreting quantum theory is the most natural interpretation that follows from Einstein–Bell realism, where causal symmetry plays a significant role in circumventing the nonclassical consequences of the traditional no-go theorems. However, Shrapnel and Costa argue that exotic causal structures, such as causal symmetry, are incapable of explaining quantum behaviour as arising as a result of noncontextual ontological properties of the world. This is particularly worrying for Einstein–Bell realism and classical ontology. In the first instance, the obvious consequence of the theorem is a straightforward rejection of Einstein–Bell realism. However, more than this, I argue that, even where there looks to be a possibility of accounting for contextual ontic variables within a causally symmetric framework, the cost of such an account undermines a key advantage of causal symmetry: that accepting causal symmetry is more economical than rejecting a classical ontology. Either way, it looks like we should give up on classical ontology.  相似文献   

12.
Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster than any polynomial rate. A consequence is that the flow admits strong statistical properties such as the almost sure invariance principle, even though the billiard map does not. The techniques in this paper yield new results for other standard examples in planar billiards, including Bunimovich flowers and stadia.  相似文献   

13.
We consider one dimensional systems of particles interacting with each other through long range interactions that are translation invariant. We seek quasi-periodic equilibrium states. Standard arguments show that if there are continuous families of quasi-periodic ground states, the system can have large scale motion, if the family of ground states is discontinuous, the system is pinned down. The transition between the two cases is called breakdown of analyticity and has been widely studied. We use recently developed fast and efficient algorithms to compute all the continuous families of ground states even close to the boundary of analyticity. We show that the boundary of analyticity can be computed by monitoring some appropriate norm of the computed solutions. We implemented these algorithms on several models. We found that there are regions where the boundary is smooth and the breakdown satisfies scaling relations. In other regions, the scalings seem to be interrupted and restart again. We present a renormalization group explanation of these phenomena. This suggest that the renormalization group may have some complicated global behavior.  相似文献   

14.
Foundations of Physics - The earliest formulation of the Higgs naturalness argument has been criticized on the grounds that it relies on a particular cutoff-based regularization scheme. One...  相似文献   

15.
Pekka Lahti is a prominent exponent of the renaissance of foundational studies in quantum mechanics that has taken place during the last few decades. Among other things, he and coworkers have drawn renewed attention to, and have analyzed with fresh mathematical rigor, the threat of inconsistency at the basis of quantum theory: ordinary measurement interactions, described within the mathematical formalism by Schrödinger-type equations of motion, seem to be unable to lead to the occurrence of definite measurement outcomes, whereas the same formalism is interpreted in terms of probabilities of precisely such definite outcomes. Of course, it is essential here to be explicit about how definite measurement results (or definite properties in general) should be represented in the formalism. To this end Lahti et al. have introduced their objectification requirement that says that a system can be taken to possess a definite property if it is certain (in the sense of probability 1) that this property will be found upon measurement. As they have gone on to demonstrate, this requirement entails that in general definite outcomes cannot arise in unitary measuring processes.In this paper we investigate whether it is possible to escape from this deadlock. As we shall argue, there is a way out in which the objectification requirement is fully maintained. The key idea is to adapt the notion of objectivity itself, by introducing relational or perspectival properties. It seems that such a “relational perspective” offers prospects of overcoming some of the long-standing problems in the interpretation of quantum mechanics.  相似文献   

16.
The geometry of the symplectic structures and Fubini-Study metric is discussed. Discussion in the paper addresses geometry of Quantum Mechanics in the classical phase space. Also, geometry of Quantum Mechanics in the projective Hilbert space has been discussed for the chosen Quantum states. Since the theory of classical gravity is basically geometric in nature and Quantum Mechanics is in no way devoid of geometry, the explorations pertaining to more and more geometry in Quantum Mechanics could prove to be valuable for larger objectives such as understanding of gravity.  相似文献   

17.
In this paper, I present a mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, it is demonstrated that quantum tunneling can be described in terms of classical physics without invoking violations of the energy conservation law at any time instance. A formula is presented that generates a wide class of potential barrier shapes with the desirable reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schrödinger’s equation. These results, with support from numerical simulations, strongly suggest that two uncoupled classical harmonic oscillators, which initially have a 90° relative phase shift and then are simultaneously disturbed by the same parametric perturbation of a finite duration, manifest behavior which can be mapped to that of a single quantum particle, with classical ‘range relations’ analogous to the uncertainty relations of quantum physics.  相似文献   

18.
A kinetic model of the Fokker-Planck-Boltzmann equation is introduced by replacing the original Boltzmann collision operator with the Bhatnagar-Gross-Krook collision model (BGK collision model). This model equation, which we call the Fokker-Planck-BGK equation, has many physical features that the Fokker-Planck-Boltzmann equation possesses. We first establish an L existence result for this equation, by which we construct the approximate solutions. Then, by means of the regularizing effects of the linear Fokker-Planck operator and L p estimates of local Maxwellians, we obtain some uniform estimates of the approximate solutions. Finally, combining those estimates and regularizing effects, we prove by a compactness argument that the equation has a global classical solution under rather general initial conditions. Supported by the Scientific Research Foundation of Huazhong University of Science and Technology (HUST-SRF).  相似文献   

19.
20.
Tomographic approach to describing both the states in classical statistical mechanics and the states in quantum mechanics using the fair probability distributions is reviewed. The entropy associated with the probability distribution (tomographic entropy) for classical and quantum systems is studied. The experimental possibility to check the inequalities like the position–momentum uncertainty relations and entropic uncertainty relations are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号