首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work we present periodic surface structures generated by linearly polarized F2 laser light (157 nm) on polyethyleneterephthalate (PET). Atomic force microscopy was used to study the topological changes induced by the laser irradiation. The laser irradiation induces the formation of periodic ripple structures with a width of ca 130 nm and a height of about 15 nm in the fluence range 3.80-4.70 mJ/cm2 and the roughness of the polymer surface increases due to the presence of these periodic structures. Subsequently, the laser modified PET foils were coated with a 50 nm thick gold layer by sputtering. After Au deposition on the PET foils with ripple structure, the roughness of surface decreases in comparison to PET with ripples without Au coating. For 50 nm thick Au layers, the ripple structure is not directly transferred to the gold coating, but it has an obvious effect on the grain size of the coating. With considerably thinner Au layers, the ripple structures are smoothened but preserved.  相似文献   

2.
Surface relief gratings (SRG) and self-organized nano-structures induced by laser light at 157 nm on the fluoropolymer poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA), films were obtained under well-controlled light exposure conditions. Regular and semi-regular spaced self-organized grating-like structures were created on polymeric films for ∼7.5-100 mJ/cm2 laser energy fluence. For lower laser fluence, the surface morphology of light exposed/non-exposed areas exhibited irregular-like structure morphologies, while polymer surface irradiation with energy fluence higher than 150 mJ/cm2 causes progressively fading out of the regular patterns. Under the specific experimental conditions, the SRG and self-organization patterning have their origin in the development of a surface thermal instability (Rayleigh's instability), which is resolved itself into regular patterns on the surface of the fluoropolymer film. The thermal instability is due to the explosive polymer surface photo-dissociation at 157 nm and the build up of longitudinal and periodic surface stress, which eventually create the SRG and the self-assembled structures on the polymer.  相似文献   

3.
Transparent SiO2 thin films were selectively fabricated on Si wafer by 157 nm F2 laser in N2/O2 gas atmosphere. The F2 laser photochemically produced active O(1D) atoms from O2 molecules in the gas atmosphere; strong oxidation reaction could be induced to fabricate SiO2 thin films only on the irradiated areas of Si wafer. The oxidation reaction was sensitive to the single pulse fluence of F2 laser. The irradiated areas were swelled and the height was approximately 500-1000 nm at the 205-mJ/cm2 single pulse fluence for 60 min laser irradiation. The fabricated thin films were analytically identified to be SiO2 by the Fourier-transform IR spectroscopy. The SiO2 thin films could be also removed by subsequent chemical etching to fabricate micro-holes 50 nm in depth on Si wafer for microfabrication.  相似文献   

4.
The morphology of materials resulting from laser irradiation of the single-layer and the multilayer amorphous Ge2Sb2Te5 films using 120 fs pulses at 800 nm was observed using scanning electron microscopy and atomic force microscopy. For the single-layer film, the center of the irradiated spot is depression and the border is protrusion, however, for the multilayer film, the center morphology changes from a depression to a protrusion as the increase of the energy. The crystallization threshold fluence of the single-layer and the multilayer film is 22 and 23 mJ/cm2, respectively.  相似文献   

5.
The effect of low energy electron beam irradiation on polycarbonate (PC) film has been studied here. The PC film of thickness 20 μm was exposed by 10 keV electron beam with 100 nA/cm2 current density. The irradiated film was characterized by mean of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and residual gas analyzer (RGA). Formation of unsaturated bonds and partial graphitization of the surface layer are measured by XPS. Results of the AFM imaging shows electron implantation induce changes in surface morphology of the polymer film. The residual gas analyzer (RGA) spectrum of PC is recorded in situ during irradiation. The results show the change in cross-linking density of the polymer at the top surface.  相似文献   

6.
Cluster size effects of SiO2 thin film formation with size-selected O2 gas cluster ion beams (GCIBs) irradiation on Si surface were studied. The cluster size varied between 500 and 20,000 molecules/cluster. With acceleration voltage of 5 kV, the SiO2 thickness was close to the native oxide thickness by irradiation of (O2)20,000 (0.25 eV/molecule), or (O2)10,000 (0.5 eV/molecule). However, it increased suddenly above 1 eV/molecule (5000 molecules/cluster), and increased monotonically up to 10 eV/molecule (500 molecules/cluster). The SiO2 thickness with 1 and 10 eV/molecule O2-GCIB were 2.1 and 5.0 nm, respectively. When the acceleration voltage was 30 kV, the SiO2 thickness has a peak around 10 eV/molecule (3000 molecules/cluster), and it decreased gradually with increasing the energy/molecule. At high energy/molecule, physical sputtering effect became more dominant process than oxide formation. These results suggest that SiO2 thin film formation can be controlled by energy per molecule.  相似文献   

7.
Si nano-composites were precipitated on LiF crystals following ablation from Si targets with laser light at 157 nm. The LiF/Si interface was analyzed with scanning electron microscopy, atomic force microscopy and energy dispersive X-ray microanalysis. It was found that Si composites were strongly attached to LiF ionic sites to form inhomogeneous structures consisted of small isotropic crystals 0.1-1 μm long, rich in Si and fluorine, which eventually further agglomerate to form larger structures. The thickness of the LiF/Si interface was increased from 50 nm to 2 μm following laser irradiation at 157 nm, due to accelerated adsorption of Si in the LiF interface by VUV light.  相似文献   

8.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

9.
This paper reports the photosensitivity of poly(methyl methacrylate) (PMMA) and its copolymer doped with trans-4-stilbenemethanol. UV irradiation of the doped-PMMA at 325 nm induced the trans- to cis-isomerization of the dopant. This process was confirmed by 1H NMR spectra of trans-4-stilbenemethanol in CDCL3 solvent before and after irradiation. The isomerization can be initiated by the irradiation with an intensity of 0.62 mW/cm2. Photo-induced refractive index change of −0.0024 was obtained when a PMMA copolymer film doped with 5.1 wt% dopant was exposed to 325 nm light. Lorentz-Lorenz equation was used to estimate the refractive index of a trans-4-stilbenemethanol-PMMA composite and a trans-4-stilbenemethanol-PMMA copolymer composite from the mole refraction and van der Waals volume of each component. A slight elevation of molecular packing coefficient (K) for PMMA and its copolymer containing the dopant implies a denser aggregation as compared to the polymer without the dopant. Long period gratings were created in doped-PMMA films and doped-PMMA copolymer fibers using amplitude mask technique. Gratings were confirmed by microscopic observation and diffraction patterns.  相似文献   

10.
We report the laser-induced voltage (LIV) effects in c-axis oriented Bi2Sr2Co2Oy thin films grown on (0 0 1) LaAlO3 substrates with the title angle α of 0°, 3°, 5° and 10° by a simple chemical solution deposition method. A large open-circuit voltage with the sensitivity of 300 mV/mJ is observed for the film on 10° tilting LaAlO3 under a 308 nm irradiation with the pulse duration of 25 ns. When the film surface is irradiated by a 355 nm pulsed laser of 25 ps duration, a fast response with the rise time of 700 ps and the full width at half maximum of 1.5 ns is achieved. In addition, the experimental results reveal that the amplitude of the voltage signal is approximately proportional to sin 2α and the signal polarity is reversed when the film is irradiated from the substrate side rather than the film side, which suggests the LIV effects in Bi2Sr2Co2Oy thin films originate from the anisotropic Seebeck coefficient of this material.  相似文献   

11.
Changes in surface characteristics of phenolphthalein poly(ether sulfone) (PES-C) film induced by ultraviolet (UV) irradiation were investigated. The surface properties of the pristine and irradiated films were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), contact angle measurements and atomic force microscopy (AFM). It was found that photooxidation degradation took place on the sample surface after irradiation and the oxygen content in the surface increased as evidenced by FTIR-ATR and XPS results. The water contact angle of the irradiated films decreased with increasing irradiation time, which was ascribed to the increased polarity of the surface induced by photooxidation. The etching of ultraviolet irradiation induced the roughening of PES-C surface after irradiation with its root-mean-square roughness (RMS) determined by AFM increased from 2.097 nm before irradiation to 7.403 nm in the area of 25 μm × 25 μm.  相似文献   

12.
Planar quarter wave stacks based on amorphous chalcogenide Ge-Se alternating with polymer polystyrene (PS) thin films are reported as Bragg reflectors for near-infrared region. Chalcogenide films were prepared using a thermal evaporation (TE) while polymer films were deposited using a spin-coating technique. The film thicknesses, d∼165 nm for Ge25Se75 (n=2.35) and d∼250 nm for polymer film (n=1.53), were calculated to center the reflection band round 1550 nm, whose wavelengths are used in telecommunication. Optical properties of prepared multilayer stacks were determined in the range 400-2200 nm using spectral ellipsometry, optical transmission and reflection measurements. Total reflection for normal incidence of unpolarized light was observed from 1530 to 1740 nm for 8 Ge-Se+7 PS thin film stacks prepared on silicon wafer. In addition to total reflection of light with normal incidence, the omnidirectional total reflection of TE-polarized light from 8 Ge-Se+7 PS thin film stacks was observed. Reflection band maxima shifted with varying incident angles, i.e., 1420-1680 nm for 45° deflection from the normal and 1300-1630 nm for 70° deflection from the normal.  相似文献   

13.
The nanobaskets of SnO2 were grown on in-house fabricated anodized aluminum oxide pores of 80 nm diameter using plasma enhanced chemical vapor deposition at an RF power of 60 W. Hydrated stannic chloride was used as a precursor and O2 (20 sccm) as a reactant gas. The deposition was carried out from 350 to 500 °C at a pressure of 0.2 Torr for 15 min each. Deposition at 450 °C results in highly crystalline film with basket like (nanosized) structure. Further increase in the growth temperature (500 °C) results in the deterioration of the basket like structure and collapse of the alumina pores. The grown film is of tetragonal rutile structure grown along the [1 1 0] direction. The change in the film composition and bonded states with growth temperature was evident by the changes in the photoelectron peak intensities of the various constituents. In case of the film grown at 450 °C, Sn 3d5/2 is found built up of Sn4+ and O-Sn4+ and the peaks corresponding to Sn2+ and O-Sn2+ were not detected.  相似文献   

14.
Interaction of a nanosecond transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm, with tungsten-titanium thin film (190 nm) deposited on silicon of n-type (1 0 0) orientation, was studied. Multi-pulse irradiation was performed in air atmosphere with laser energy densities in the range 24-49 J/cm2. The energy absorbed from the laser beam was mainly converted to thermal energy, which generated a series of effects. The following morphological changes were observed: (i) partial ablation/exfoliation of the WTi thin film, (ii) partial modification of the silicon substrate with formation of polygonal grains, (iii) appearance of hydrodynamic features including nano-globules. Torch-like plumes started appearing in front of the target after several laser pulses.  相似文献   

15.
Influence of substrate on electronic sputtering of fluoride (LiF, CaF2 and BaF2) thin films, 10 and 100 nm thin, under dense electronic excitation of 120 MeV Ag25+ ions irradiation is investigated. The sputtering yield of the films deposited on insulating (glass) and semiconducting (Si) substrates are determined by elastic recoil detection analysis technique. Results revealed that sputtering yield is higher, up to 7.4 × 106 atoms/ion for LiF film on glass substrate, than that is reported for bulk materials/crystals (∼104 atoms/ion), while a lower value of the yield (2.3 × 106 atoms/ion) is observed for film deposited on Si substrate. The increase in the yield for thin films as compared to bulk material is a combined effect of the insulator substrate used for deposition and reduced film dimension. The results are explained in the framework of thermal spike model along with substrate and size effects in thin films. It is also observed that the material with higher band gap showed higher sputtering yield.  相似文献   

16.
The thickness evolution of multilayer film is investigated by focused ion beam (FIB) in the domain of polymer multilayers. This method, currently used in the modification and the characterization of integrated circuits, proves it is possible to determine the polymer film thickness. Sample cutting and its observation of the cross-section are performed in the FIB without leaving the vacuum chamber. Two main conclusions can be drawn: (1) the roughness of the film increases with the number of layer deposit, (2) the film growth changes from nonlinear (called exponential) to linear beyond 300 nm (70 layers).  相似文献   

17.
The mechanism of improving 1064 nm, 12 ns laser-induced damage threshold (LIDT) of TiO2/SiO2 high reflectors (HR) prepared by electronic beam evaporation from 5.1 to 13.1 J/cm2 by thermal annealing is discussed. Through optical properties, structure and chemical composition analysis, it is found that the reduced atomic non-stoichiometric defects are the main reason of absorption decrease and LIDT rise after annealing. A remarkable increase of LIDT is found at 300 °C annealing. The refractive index and film inhomogeneity rise, physical thickness decrease, and film stress changes from compress stress to tensile stress due to the structure change during annealing.  相似文献   

18.
NiO nanoparticle thin films grown on Si substrates were irradiated by 107 MeV Ag8+ ions. The films were characterized by glancing angle X-ray diffraction and atomic force microscopy. Ag ion irradiation was found to influence the shape and size of the nanoparticles. The pristine NiO film consisted of uniform size (∼100 nm along major axis and ∼55 nm along minor axis) elliptical particles, which changed to also of uniform size (∼63 nm) circular shape particles on irradiation at a fluence of 3 × 1013 ions cm−2. Comparison of XRD line width analysis and AFM data revealed that the particles in the pristine films are single crystalline, which turn to polycrystalline on irradiation with 107 MeV Ag ions.  相似文献   

19.
The Ag/Tl2Ba2Ca2Cu3O10/CdSe heterostructure was fabricated at room temperature by soft electrochemical processing technique for the first time. The formation of the heterostructure with non-diffusive interfaces was confirmed by X-ray diffraction. The crystallite sizes determined for Tl-2223 and CdSe films were 33 nm and 25 nm, respectively. The Tl2Ba2Ca2Cu3O10 film electrodeposited onto Ag-substrate has shown the superconducting transition temperature Tc at 116.5 K and Jc = 2.1 × 103 A/cm2. These values were found to improve after the deposition of CdSe onto Ag/Tl-2223 films. The effect of red He-Ne laser irradiation on the superconducting properties of heterostructure are studied and discussed at length in this paper.  相似文献   

20.
We investigated UV absorption changes induced in 3.5 mol% Ge-doped fused silica at high-intensity (∼1011-1013 W/cm2) femtosecond (130 fs) irradiation at 267, 400 and 800 nm. We have shown that the induced spectra in the region 190-300 nm are similar in all three cases. At 800 nm irradiation, in addition to the UV absorption changes, we observed small-scale damage due to self-focusing. This damage appears when the incident pulse fluence value of about 1 J/cm2 (pulse intensity of about 7.5 × 1012 W/cm2) is overcome, while the threshold for the induced absorption changes is twice lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号