首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly oriented films of ∼6 μm in thickness consisting of the Nd2Fe14B compound phase were obtained by a three-dimensional sputtering method at room temperature and the subsequent crystallization by annealing. The c-axis orientation and coercivity of film samples were sensitive to the sputtering parameters and annealing conditions. The optimum temperature and time for annealing were 650 °C and 30 min to show the highest coercivity without any deterioration for the orientation of Nd2Fe14B grains, and furthermore the degree of c-axis orientation was increased by decreasing the Ar gas pressure or input power for sputtering. The resultant film magnets with good magnetic properties of Br=∼1.06 T, HC=∼371 kA/m, and (BH)max=∼160 kJ/m3 were obtained under the optimized parameters for sputtering.  相似文献   

2.
In this study, the influence of the crystal orientation on the electrical properties of sputter deposited aluminium nitride (AlN) thin films on low temperature co-fired ceramics (LTCC) substrates is investigated. The degree of c-axis orientation can be tailored by the deposition conditions such as plasma power, gas pressure and gas composition in the deposition chamber. Due to the large surface roughness of LTCC substrates (Ra = ∼0.4 μm) the quality of thin films is lower compared to silicon. Between areas of columnar grains arranged perpendicular to the LTCC surface, defects like voids are generated due to the wavy surface characteristics. The impact of crystal orientation and temperature up to 400 °C on the electrical performance is evaluated, as these layers are targeted as potential candidates for dielectric heat spreaders on multilayered ceramic substrates for high frequency applications. These AlN thin films having a good c-axis orientation exhibit lower leakage current levels over the complete temperature range compared to those with a poor alignment with respect to this crystallographic plane. The leakage current behaviour, however, is dominated according to the Pool-Frenkel electron emission independent of the degree of c-axis orientation.  相似文献   

3.
A pulsed DC reactive ion beam sputtering system has been used to synthesize aluminium nitride (AlN) thin films at room temperature by reactive sputtering. After systematic study of the processing variables, high-quality polycrystalline films with preferred c-axis orientation have been grown successfully on silicon and Au/Si substrates with an Al target under a N2/(N2 + Ar) gas flow ratio of 55%, 2 mTorr processing pressure and keeping the temperature of the substrate holder at room temperature. The crystalline quality of the AlN layer as well as the influence of the substrate crystallography on the AlN orientation has been characterized by high-resolution X-ray diffraction (HR-XRD). Best ω-FWHM (Full Width at Half Maximum) values of the (0 0 0 2) reflection rocking curve in the 1 μm thick AlN layers are 1.3°. Atomic Force Microscopy (AFM) measurements have been used to study the surface morphology of the AlN layer and Transmission Electron Microscopy (TEM) measurements to investigate the AlN/substrate interaction. AlN grew off-axis from the Si substrate but on-axis to the surface normal. When the AlN thin film is deposited on top of an Au layer, it grows along the [0 0 0 1] direction but showing a two-domain structure with two in-plane orientations rotated 30° between them.  相似文献   

4.
The effects of oxygen pressure during deposition on microstructure and magnetic properties of strontium hexaferrite (SrFe12O19) films grown on Si (100) substrate with Pt (111) underlayer by pulsed laser deposition have been investigated. X-ray diffraction pattern confirms that the films have c-axis perpendicular orientation. The c-axis dispersion (Δθ50) increases and c-axis lattice parameter decreases with increasing oxygen pressure. The films have hexagonal shape grains with diameter of 150-250 nm as determined by atomic force microscopy. The coercivities in perpendicular direction are higher than those in in-plane direction, which shows the films have perpendicular magnetic anisotropy. The saturation magnetization and anisotropy field for the film deposited in oxygen pressure of 0.13 mbar are comparable to those of the bulk strontium hexaferrite. Higher oxygen pressure leads to the films having higher coercivity and squareness. The coercivity in perpendicular and in-plane directions of the film deposited in oxygen pressure of 0.13 mbar are 2520 Oe and 870 Oe, respectively.  相似文献   

5.
Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at ∼380 nm and a blue band centered at ∼430 nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zni) and Zn vacancy (VZn) level transition. A strong blue peak (∼435 nm) was observed in the PL spectra when the αCu (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of αCu and the sputtering power on the blue band was investigated.  相似文献   

6.
A noble metal Pt thin film was successfully grown on (0 0 1) SrTiO3 substrate by using a DC-sputtering technique. The surface morphology and growth features of the as-grown Pt films were investigated by scanning tunnelling microscopy. Growth conditions, such as pre-sputtering, deposition ambience, and oxygen ratio are found to greatly affect the orientation, the crystallinity, and the epitaxial behavior of Pt films on (0 0 1) SrTiO3. Single-crystalline Pt films have been achieved by introducing a few percentage oxygen into the sputtering ambient. The in-plane-relationship of the c-axis oriented Pt thin films on (0 0 1) SrTiO3 was determined to be (0 0 1)Pt∥(0 0 1)SrTiO3 and [0 0 1]Pt∥[0 0 1]SrTiO3. Oxygen in the sputtering ambient was found to be a key factor to achieve the epitaxial Pt films.  相似文献   

7.
Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at −1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO3)2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of (αhν)2 vs. , which was found to be 3.31 eV.  相似文献   

8.
Optical properties of Al-doped ZnO thin films by ellipsometry   总被引:1,自引:0,他引:1  
Al-doped ZnO thin films (AZO) were prepared on Si (1 0 0) substrates by using sub-molecule doping technique. The Al content was controlled by varying Al sputtering time. The as-prepared samples were annealed in vacuum chamber at 800 °C for 30 min. From the XRD observations, it is found that all films exhibit only the (0 0 2) peak, suggesting that they have c-axis preferred orientation. The average transmittance of the visible light is above 80%. Spectroscopic ellipsometry was used to extract the optical constants of the films. The absorption coefficient and the energy gap were then calculated. The results show that the absorption edge initially blue-shifts and then red-shifts with increase of Al content.  相似文献   

9.
M-type barium ferrite thin films were deposited onto sapphire (0 0 l) substrates by radio frequency magnetron sputtering. An ultra-thin layer about 20 nm was deposited and annealed before continuous deposition of the films up to 500 nm under different sputtering pressures: 0.2, 0.5, 0.8 and 1.0 Pa, respectively. It was found that the atomic ratios of Fe to Ba increased from 9.3 to 15.0 with the increase of the pressure. The films sputtered at all pressures have c-axis normal to the film plane by a four circle X-ray diffractometer, which is an improvement of the films directly sputtered on the substrate. Needle-like grains were formed on the surface of the films under higher sputter pressure with bubble domains, which is originated from high magnetocrystalline anisotropy of the film. Magnetic hysteresis loops recorded by vibrating sample magnetometer agree with them, where in-plane and out-of-plane loops of the samples prepared under high sputtering pressures are quite different, while they are almost identical of the samples under low pressures. The influence of the sputtering pressure was understood by that with the increase of the pressure, resputtering of the films was increased. Nucleation with c-axis normal to the film plane was deteriorated. Thus samples prepared under high pressure have more needle-like crystallites which have c-axis parallel to the film plane.  相似文献   

10.
a-axis- and c-axis-oriented YBa2Cu3O7−δ (YBCO) films were epitaxially grown on (1 0 0) LaAlO3 substrates by laser chemical vapor deposition. The preferred orientation in the YBCO film changed from the a-axis to the c-axis with increasing laser powers from 77 to 158 W (the deposition temperatures from 951 to 1087 K). The a-axis-oriented YBCO film showed in-plane epitaxial growth of YBCO [0 0 1]//LAO [0 0 1], and the c-axis-oriented YBCO film showed that of YBCO [0 1 0]//LAO [0 0 1]. A c-axis-oriented YBCO film with a high critical temperature of 90 K was prepared at a deposition rate of 90 μm h−1, about 2-1000 times higher than that of metalorganic chemical vapor deposition.  相似文献   

11.
A metal-semiconductor-metal photoconductive detector was fabricated on c-axis preferred oriented Ga-doped ZnO (ZnO:Ga) thin film prepared on quartz by radio-frequency magnetron sputtering. With a 10 V bias, a responsivity of about 2.6 A/W at 370 nm was obtained in the ultraviolet region. The photocurrent increases linearly with incident power density for more than two orders of magnitude. The transient response measurement revealed photoresponse with a rise time of 10 ns and a fall time of 960 ns, respectively. The results are much faster than those reported in photoconductive detectors based on unintentionally doped n-type ZnO films.  相似文献   

12.
Al-doped ZnO (ZnO:Al) thin films with c-axis preferred orientation were deposited on glass substrates using the radio frequency reactive magnetron sputtering technique. The effect of Al concentrations on the microstructure and the luminescence properties of the ZnO:Al thin films were studied by atomic force microscopy (AFM), X-ray diffraction (XRD), and fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted by appropriate Al concentrations; the photoluminescence spectra (PL) of the samples were measured at room temperature. Strong blue peak located at 437 nm (2.84 eV) and two weak green peaks located at about 492 nm (2.53 eV) and 524 nm (2.37 eV) were observed from the PL spectra of the four samples. The origin of these emissions was discussed. In addition, absorption and transmittance properties of the samples were researched by UV spectrophotometer; the UV absorption edge shifted to a shorter wavelength first as Al was incorporated, and then to a longer wavelength with the increasing Al concentrations. The optical band gaps calculated based on the quantum confinement model are in good agreement with the experimental values.  相似文献   

13.
We investigated the dependences of the critical current density Jc on the magnetic field angle θ in YBa2Cu3O7−δ thin films with the crossed configurations of the columnar defects (CDs). To install the crossed CDs, the films were irradiated using the high energetic Xe ions at two angles relative to the c-axis. The additional peak around the c-axis appears in the Jc(θ) for all irradiated films. In lower magnetic fields, the height of the Jc(θ) peak caused by the crossed CDs with the crossing angles θi = ±10° was higher than that for the parallel CDs. It is considered that the correlation of the flux pinning by the crossed CDs along the c-axis occurs even in the case of θi = ±25°, which was also suggested by the kink behaviors of the scaling parameters of the current–voltage characteristics near 1/3 of the matching field. In higher magnetic fields, on the other hand, the height and width of the Jc(θ) peak for the crossed CD configurations rapidly reduce with increasing the magnetic field compared to the parallel ones. In the crossed CD configurations, the dispersion in the direction of CDs would prevent the correlation of flux pinning along the c-axis in high magnetic fields, which occurs in the parallel CD configurations due to the collective pinning of flux lines including the interstitial flux lines between the directly pinned flux lines by CDs.  相似文献   

14.
W-doped ZnO nanostructures were synthesized at substrate temperature of 600 °C by pulsed laser deposition (PLD), from different wt% of WO3 and ZnO mixed together. The resulting nanostructures have been characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and photoluminescence for structural, surface morphology and optical properties as function of W-doping. XRD results show that the films have preferred orientation along a c-axis (0 0 L) plane. We have observed nanorods on all samples, except that W-doped samples show perfectly aligned nanorods. The nanorods exhibit near-band-edge (NBE) ultraviolet (UV) and violet emissions with strong deep-level blue emissions and green emissions at room temperature.  相似文献   

15.
Ti-doped ZnO (ZnO:Ti) thin films were deposited on the glass and Si substrates using radio frequency reactive magnetron sputtering. The effects of substrate on the microstructures and optical properties of ZnO:Ti thin films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer. The structural analyses of the films indicated that they were polycrystalline and had a hexagonal wurtzite structure on different substrates. When ZnO:Ti thin film was deposited on Si substrate, the film had a c-axis preferred orientation, while preferred orientation of ZnO:Ti thin film deposited on glass substrate changed towards (1 0 0). Finally, we discussed the influence of the oxygen partial pressures on the structural and optical properties of glass-substrate ZnO:Ti thin films. At a high ratio of O2:Ar of 18:10 sccm, the intensity of (0 0 2) diffraction peak was stronger than that of (1 0 0) diffraction peak, which indicated that preferred orientation changed with the increase of O2:Ar ratios. The average optical transmittance with over 93% in the visible range was obtained independent of the O2:Ar ratio. The photoluminescence (PL) spectra measured at room temperature revealed four main emission peaks located at 428, 444, 476 and 527 nm. Intense blue-green luminescence was obtained from the sample deposited at a ratio of O2:Ar of 14:10 sccm. The results showed that the oxygen partial pressures had an important influence for PL spectra and the origin of these emissions was discussed.  相似文献   

16.
Si doped zinc oxide (SZO, Si3%) thin films are grown at room temperature on glass substrates under argon atmosphere, using direct current magnetron sputtering. The influence of the target substrate distances on structure, morphology, optical and electrical properties of SZO thin films is investigated. Experimental results show that the target substrate distances have a significance impact on the growth rate, crystal quality and electrical properties of the films, and have little impact on the optical properties of the films. SZO thin film samples grown on glasses are polycrystalline with a hexagonal wurtzite structure and have a preferred orientation along the c-axis perpendicular to the substrate. When the target substrate distance decreases from 76 to 60 mm, the degree of crystallization of the films increased, the grain size increases, and the resistivity of films decreases. However, when the distance continuously decreases from 60 to 44 mm, the degree of crystallization of the films decreased, the grain size decreases, and the resistivity of the films increases. SZO(3%) thin films deposited at a target substrate distance of 60 mm show the lowest resistivity of 5.53 × 10−4 Ω cm, a high average transmission of 94.47% in the visible range, and maximum band gap of 3.45 eV under 5 Pa of argon at sputtering power of 75 W for sputtering time of 20 min.  相似文献   

17.
Strontium ferrite (SrM) thin films deposited on thermally oxidized silicon wafer (SiO2/Si) and single crystal sapphire with (0 0 l) orientation (Al2O3(0 0 l)) substrate using Pt underlayer were prepared by DC magnetron sputtering system. It was found that the intensity of (1 1 1) line for Pt and that of (0 0 l) diffraction line for SrM increases with increasing substrate temperature, Tu. The c-axis dispersion angle, Δθ50, of SrM(0 0 8) depends on that of Pt underlayer. Both dispersion angle of Pt(1 1 1) and SrM(0 0 8) decrease with increasing temperature. It was observed that the saturation magnetization of SrM/Pt deposited on SiO2/Si is higher than that of Al2O3 substrate. The coercivity and remanent squareness ratio in perpendicular direction are higher than that in in-plane direction. The maximum of coercivity in perpendicular direction of SrM/Pt films deposited on single crystal Al2O3 is about 4.2 kOe.  相似文献   

18.
We report on the effects of glass substrate temperature on the crystal structure and morphology of tungsten (W)-doped ZnO nanostructures synthesized by pulsed-laser deposition. X-ray diffraction analysis data shows that the W-doped ZnO thin films exhibit a strongly preferred orientation along a c-axis (0 0 0 L) plane, while scanning electron and atomic force microscopes reveal that well-aligned W-doped ZnO nanorods with unique shape were directly and successfully synthesized at substrate temperature of 550 °C and 600 °C without any underlying catalyst or template. Possible growth mechanism of these nanorods is suggested and discussed.  相似文献   

19.
ZnO:Al thin films with c-axis preferred orientation were deposited on glass and Si substrates using RF magnetron sputtering technique. The effect of substrate on the structural and optical properties of ZnO:Al films were investigated. The results showed a strong blue peak from glass-substrate ZnO:Al film whose intensity became weak when deposited on Si substrate. However, the full width at half maxima (FWHM) of the Si-substrate ZnO:Al (0 0 2) peaks decreased evidently and the grain size increased. Finally, we discussed the influence of annealing temperature on the structural and optical properties of Si-substrate ZnO:Al films. After annealing, the crystal quality of Si-substrate ZnO:Al thin films was markedly improved and the intensity of blue peak (∼445 nm) increased noticeably. This observation may indicate that the visible emission properties of the ZnO:Al films are dependent more on the film crystallinity than on the film stoichiometry.  相似文献   

20.
Al-N-codoped ZnO films were fabricated by RF magnetron sputtering in the ambient of N2 and O2 on silicon (1 0 0) and homo-buffer layer, subsequently, annealed in O2 at low pressure. X-ray diffraction (XRD) spectra show that as-grown and 600 °C annealed films grown by codoping method are prolonged along crystal c-axis. However, they are not prolonged in (0 0 1) plane vertical to c-axis. The films annealed at 800 °C are not prolonged in any directions. Codoping makes ZnO films unidirectional variation. X-ray photoelectron spectroscopy (XPS) shows that Al content hardly varies and N escapes with increasing annealing temperature from 600 °C to 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号