首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
AlNxOy thin films were produced by DC reactive magnetron sputtering, using an atmosphere of argon and a reactive gas mixture of nitrogen and oxygen, for a wide range of partial pressures of reactive gas. During the deposition, the discharge current was kept constant and the discharge parameters were monitored. The deposition rate, chemical composition, morphology, structure and electrical resistivity of the coatings are strongly correlated with discharge parameters. Varying the reactive gas mixture partial pressure, the film properties change gradually from metallic-like films, for low reactive gas partial pressures, to stoichiometric amorphous Al2O3 insulator films, at high pressures. For intermediate reactive gas pressures, sub-stoichiometric AlNxOy films were obtained, with the electrical resistivity of the films increasing with the non-metallic/metallic ratio.  相似文献   

2.
Compact and homogeneous c-axis preferred orientation of zinc oxide (ZnO) films on indium tin oxide (ITO) coated glass have been prepared electrochemically at −1.2 V vs. Ag|AgCl in a weak acidic condition from 0.06 M Zn(NO3)2 with 3 mM lactic acid (LA) added. LA was found having strong influence on the electrodeposition of c-axis preferred orientation of zinc oxide films. Other experimental variables such as deposition temperature, potential, and precursor concentration were also conducted in this article. Among these variables, it was found that precursor concentration of zinc nitrate influenced significantly on growth direction and crystal diameter of zinc oxide. Cyclic voltammetry was used to observe the electrochemistry of the deposition. Crystallinities of the films were examined by X-ray diffractometer. The morphologies of zinc oxide films were observed with a field emitting scanning electron microscope. Optical characteristics of zinc oxide layers were measured with UV-vis spectrophotometer. The band gap of the deposited zinc oxide thin films was evaluated from the Tauc relationship of (αhν)2 vs. , which was found to be 3.31 eV.  相似文献   

3.
In this paper, c-axis oriented AlN films were prepared on sapphire substrate by RF reactive magnetron sputtering at various deposition temperatures (30–700 °C). The influences of deposition temperature on the chemical composition, crystalline structure and surface morphology of the AlN films were systematically investigated. The as-deposited films were characterized by X-ray photoelectron spectroscopy (XPS), two-dimensional X-ray diffraction (2D-XRD) and atomic force microscopy (AFM). The experimental results show that it can be successfully grown for high-purity and near-stoichiometric (Al/N = 1.12:1) AlN films except for the segregation of a few oxygen impurities exist in the form of Al–O bonding. The chemical composition of as-deposited films is almost independent of substrate temperature in the range of 30–700 °C. However, the crystalline structure and surface morphology of the deposited AlN films are strongly influenced by the deposition temperature. The optimum deposition temperature is 300 °C, giving a good compromise between crystalline structure and surface morphology to grow AlN films.  相似文献   

4.
采用直流磁控反应溅射法,在Si(111)基底上成功制备了多晶六方相AlN薄膜.研究了溅射过程中溅射气压对薄膜结构和表面粗糙度的影响.结果表明:当溅射气压低于0.6 Pa时,薄膜为非晶态,在傅里叶变换红外光谱中,没有明显的吸收峰;当溅射气压不低于0.6 Pa时,薄膜的X射线衍射图中均出现了六方相的AlN(100)、(11...  相似文献   

5.
 实验采用直流磁控溅射沉积技术在不同溅射功率下制备Mo膜,研究了不同溅射功率下Mo膜的沉积速率、表面形貌及晶型结构,并对其晶粒尺寸和应力进行了研究。利用原子力显微镜观察样品的表面形貌发现随着溅射功率的增加,薄膜表面粗糙度逐渐增大。X射线衍射分析表明薄膜呈立方多晶结构,晶粒尺寸为14.1~17.9 nm;应力先随溅射功率的增大而增大,在40 W时达到最大值(2.383 GPa),后随溅射功率的增大有所减小。  相似文献   

6.
In the present work, a study is made to investigate the effects of process parameters, namely, laser power, welding speed, size of the laser beam and clamp pressure, on the lap-shear strength and weld-seam width for laser transmission welding of acrylic (polymethyl methacrylate), using a diode laser system. Response surface methodology (RSM) is employed to develop mathematical relationships between the welding process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired weld quality. In addition, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Design-Expert v7 is used to establish the design matrix and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their adequacy. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses adequately within the limits of welding parameters being used.  相似文献   

7.
Spectroscopic signals originated by the laser-induced plasma optical emission have been simultaneously investigated together with energetic and metallographic analyses of CO2 laser welded stainless steel lap joint, using the Response Surface Methodology. This statistical approach allowed us to study the influence of the laser beam power and the laser welding speed on the following response parameters: plasma plume electron temperature, joint penetration depth and melted area. A clear correlation has been found between all the investigated response parameters. The results have been shown to be consistent with quantitative considerations on the energy supplied to the workpiece as far as the laser power and travel speed were varied. The regression model obtained in this way could be a valuable starting point to develop a closed loop control of the weld penetration depth and the melted area in the investigated process window.  相似文献   

8.
We report structural and optical properties of aluminum nitride (AlN) thin films prepared by RF magnetron sputtering. A ceramic AlN target was used to sputter deposit AlN films without external substrate heating in Ar-N2 (1:1) ambient. The X-ray diffraction and high resolution transmission electron microscopy results revealed that the films were preferentially oriented along c-axis. Cross-sectional imaging revealed columnar growth perpendicular to the substrate. The secondary ion mass spectroscopy analysis confirmed that aluminum and nitrogen distribution was uniform within the thickness of the film. The optical band gap of 5.3 eV was evaluated by UV-vis spectroscopy. Photo-luminescence broad band was observed in the range of 420-600 nm with two maxima, centered at 433 nm and 466 nm wavelengths related to the energy states originated during the film growth. A structural property correlation has been carried out to explore the possible application of such important well oriented nano-structured two-dimensional semiconducting objects.  相似文献   

9.
Sputtering technique has been used for the deposition of AgGaSe2 thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe2 thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe2 structure up to annealing temperature 450 °C and then the structure turned to the single phase AgGaSe2 with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 °C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe2 thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).  相似文献   

10.
Laser bonding parameters play a very significant role in determining the quality of laser transmission bonding between PET films and titanium films coated glass sheets. In order to achieve good bond strength and minimal bond width, three key process parameters affecting the bond quality of transmission laser bonding, namely, laser power, bond speed and film thickness were optimized by response surface methodology in this paper. Response surface methodology (RSM) was used to develop mathematical models between the key process parameters and the desired responses and the central composite design (CCD) was utilized to conduct experimental planning. The samples were tested using an electromechanical universal micro-tester in order to determine bond strength. The morphology of the bonded area was observed with an optical microscope. The interaction effect of main process parameters on bond quality was researched. Design Expert analysis indicated that the best laser power, bond speed and film thickness on bond quality were 11.2 W, 4 mm/s and 163 nm, respectively. Finally, the experimental results are consistent with the predicted, which illustrates that the developed mathematical models can predict the responses adequately.  相似文献   

11.
NiTi shape memory alloy thin films are deposited on pure Cu substrate at substrate ambient temperatures of 300 °C and 450 °C. The surface and interface oxidation of NiTi thin films are characterized by X-ray photoelectron spectroscopy (XPS). After a subsequent annealing treatment the crystallization behavior of the films deposited on substrate at different temperatures is studied by X-ray diffraction (XRD). The effects of substrate temperature on the surface and interface oxidation of NiTi thin films are investigated. In the film surface this is an oxide layer composed of TiO2. The Ni atom has not been detected on surface. In the film/substrate interface there is an oxide layer with a mixture Ti2O3 and NiO in the films deposited at substrate temperatures 300 °C and 450 °C. In the films deposited at ambient temperature, the interface layer contains Ti suboxides (TiO) and metallic Ni.  相似文献   

12.
The Ti-doped ZnO (ZnO:Ti) thin films have been deposited on glass substrates by radio frequency (RF) reactive magnetron sputtering technique with different Ti doping concentrations. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited ZnO:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and fluorescence spectrophotometer. The XRD measurements revealed that all the films had hexagonal wurtzite type structure with a strong (100) preferential orientation and relatively weak (002), (101), and (110) peaks. It was found that the intensity of the (100) diffraction peaks was strongly dependent on the Ti doping concentration. And the full width at half-maximum (FWHM) of (002) diffraction peaks constantly changed at various Ti contents, which decreased first and then increased, reaching a minimum of about 0.378° at 1.43 at.% Ti. The morphologies of ZnO:Ti films with 1.43 at.% Ti showed a denser texture and better smooth surface. All the films were found to be highly transparent in the visible wavelength region with an average transmittance over 90%. Compared with Eg = 3.219 eV for pure ZnO film, all the doping samples exhibited a blue-shift of Eg. It can be attributed to the incorporation of Ti atoms and raising the concentration of carriers. Five emission peaks located at 412, 448, 486, 520, and 550 nm were observed from the photoluminescence spectra measured at room temperature and the origin of these emissions was discussed.  相似文献   

13.
A crystallization and surface evolution study of Au thin film on SiO2 substrates following annealing at different temperatures above the eutectic point of the Au/Si system are reported. Samples were prepared by conventional evaporation of gold in a high vacuum (10−7 mbar) environment on substrates at room temperature. Thermal treatments were performed by both furnace and flame annealing techniques. Au thin films can be crystallized on SiO2 substrates by both furnace and flame annealing. Annealing arranges the Au crystallites in the (1 1 1) plane direction and changes the morphology of the surface. Both, slow and rapid annealing result in a good background in the XRD spectra and hence clean and complete crystallization which depends more on the temperature than on the time of annealing. The epitaxial temperature for the Au/SiO2 system decreases in the range of 350-400 °C. Furnace and flame annealing also form crystallized gold islands over the Au/SiO2 surface. Relaxation at high temperatures of the strained Au layer, obtained after deposition, should be responsible for the initial stages of clusters formation. Gold nucleation sites may be formed at disordered points on the surface and they become islands when the temperature and time of annealing are increased. The growth rate of crystallites is highest around 360 °C. Above this temperature, the layer melts and gold diffuses from the substrate to the nucleation sites to increase the distance between islands and modify their shapes. Well above the eutectic temperature, the relaxed islands have hexagonally shaped borders. The mean crystallite diameters grow up to a maximum mean size of around 90 nm. The free activation energy for grain boundary migration above 360 °C is 0.2 eV. Therefore the type of the silicon substrate changes the mechanism of diffusion and growth of crystallites during annealing of the Au/Si system. Epitaxial Au(1 1 1) layers without formation of islands can be prepared by furnace annealing in the range of 300-310 °C and by flame annealing of a few seconds and up to 0.5 min.  相似文献   

14.
Ag-Cu-O films were deposited on glass substrates by reactive sputtering of a composite Ag60Cu40 target in various Ar-O2 mixtures. The films were characterised by energy dispersive X-ray analysis, X-ray diffraction, UV-visible spectroscopy and using the four point probe method. The structure of the films is strongly dependent on the oxygen flow rate introduced in the deposition chamber. The variation of the oxygen flow rate allows the deposition of the following structures: Ag-Cu-(O) solid solution, nc-Ag + nc-Cu2O, nc-Ag + nc-(Ag,Cu)2O and finally X-ray amorphous. UV-visible reflectance measurements confirm the occurrence of metallic silver into the deposited films. The increase of the oxygen flow rate induces a continuous increase of the film oxygen concentration that can be correlated to the evolution of the film reflectance and the film electrical resistivity. Finally, the structural changes vs. the oxygen content are discussed in terms of reactivity of sputtered atoms with oxygen.  相似文献   

15.
d-limonene in water nanoemulsion was prepared by ultrasonic emulsification using mixed surfactants of sorbitane trioleate and polyoxyethylene (20) oleyl ether. Investigation using response surface methodology revealed that 10% d-limonene nanoemulsions formed at S0 ratio (d-limonene concentration to mixed surfactant concentration) 0.6-0.7 and applied power 18 W for 120 s had droplet size below 100 nm. The zeta potential of the nanoemulsion was approximately −20 mV at original pH 6.4, closed to zero around pH 4.0, and around −30 mV at pH 12.0. The main destabilization mechanism of the systems is Ostwald ripening. The ripening rate at 25 °C (0.39 m3 s−1 × 1029) was lower than that at 4 °C (1.44 m3 s−1 × 1029), which was in agreement with the Lifshitz-Slezov-Wagner (LSW) theory. Despite of Ostwald ripening, the droplet size of d-limonene nanoemulsion remained stable after 8 weeks of storage.  相似文献   

16.
Effects of the annealing temperature on structural, optical and surface properties of chemically deposited cadmium zinc sulfide (CdZnS) films were investigated. X-ray diffraction (XRD) results showed that the grown CdZnS thin films formed were polycrystalline with hexagonal structure. Atomic force microscopy (AFM) studies showed that the surface roughness of the CdZnS thin films was about 60-400 nm. Grain sizes of the CdZnS thin films varied between 70 and 300 nm as a function of annealing temperature. The root mean square surface roughness of the selected area, particular point, average roughness profile, topographical area of roughness were measured using the reported AFM software. The band gaps of CdZnS thin films were determined from absorbance measurements in the visible range as 300 nm and 1100 nm, respectively, using Tauc theory.  相似文献   

17.
本文利用磁控溅射的方法制备了L1_0-CoPt薄膜,研究了不同退火条件对薄膜结构、磁性以及表面形貌的影响.通过优化退火温度、保温时间以及升温速率,制备出了具有大矫顽力、高矩形比、粗糙度小的垂直各向异性L1_0-CoPt薄膜.实验发现,较高的退火温度有利于克服CoPt薄膜有序化转变所需要的能量,同时适当延长退火时间可以提高CoPt薄膜的扩散系数,从而促使无序相fcc转化为L1_0有序相fct结构.此外,退火过程中减缓升温速率可以有效减小薄膜粗糙度,从而形成平整连续膜.  相似文献   

18.
In this work, ultrasound-assisted adsorption of an anionic dye, sunset yellow (SY) and cationic dyes, malachite green (MG), methylene blue (MB) and their ternary dye solutions onto Cu@ Mn-ZnS-NPs-AC from water aqueous was optimized by response surface methodology (RSM) using the central composite design (CCD). The adsorbent was characterized using Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and EDX mapping images. The effects of various parameters such as pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were examined. A total 33 experiments were conducted to establish a quadratic model. Cu@ Mn-ZnS-NPs-AC has the maximum adsorption efficiency (>99.5%) when the pH, sonication time, adsorbent mass and initial concentrations of SY, MG and MB were optimally set as 6.0, 5 min, 0.02 g, 9, 12 and 12 mg L−1, respectively. Sonication time has a statistically significant effect on the selected responses. Langmuir isotherm model was found to be best fitted to adsorption and adsorption capacities were 67.5 mg g−1 for SY, 74.6 mg g−1 for MG and 72.9 mg g−1 for MB. Four kinetic models (pseudo-first order, pseudo-second order, Weber–Morris intraparticle diffusion rate and Elovich) were tested to correlate the experimental data and the sorption was fitted well with the pseudo-second order kinetic model.  相似文献   

19.
An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30–70 °C), extraction time (X2: 25–45 min) and amplitude (X3: 30–50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25–100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.  相似文献   

20.
This study aimed to optimize the ultrasound-assisted extraction (UAE) condition of mulberry leaf extract (MLE) using response surface methodology and to microencapsulate MLE by spray drying using different coating materials and ratios of coating material and MLE. The extraction results showed that MLE from condition of 60 °C (X1, temperature), 30 min (X2, time) and 60% v/v (X3, ethanol concentration) exhibited the highest bioactive compound and antioxidant activity (DPPH and FRAP assay). Based on this optimal condition, MLE was further encapsulated by spray drying. It was found that MLE encapsulated with resistant maltodextrin at ratio of MLE and resistant maltodextrin 1:1 (w/w) showed the highest encapsulation yield (%) and encapsulation efficiency (%). Water solubility, moisture content and water activity were non-significant (p > 0.05) among the microcapsules. The scanning electron microscope (SEM) revealed that the types of coating material affected their microstructures and microcapsules prepared by resistant maltodextrin as coating material had a spherical shape, smooth surface and less shrinkage than microcapsules prepared by maltodextrin and gum arabic which had rough surfaces. The highest antioxidant activity was obtained from microcapsule prepared by gum arabic at ratio of MLE and gam arabic 1:2 (w/w). In conclusion, optimal condition from UAE and encapsulation by spray drying suggest the critical potential for production of functional food with improved bioactive compound stability and maximized antioxidant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号