首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electrical and microstructural properties of the PdSi based ohmic contacts on n-InP are discussed in the research. A low specific contact resistance of 2.25 × 10−6 Ω cm2 is obtained on Au/Si/Pd/n-InP contact after rapid thermal annealing (RTA) at 450 °C for 30 s. The low contact resistance can be maintained at the order of 10−6 Ω cm2 even up to 500 °C annealing. From the Auger analysis, it is found that both the outdiffusion of In and the indiffusion of Si into the InP surface occurred at the ohmic contact sample. The formation of the Pd3Si compound lowered the barrier of the contact. The reactions between Pd and InP of the contact, forming In vacancies, and leading the doping of Si to the InP contact interface.  相似文献   

2.
N-doped p-type ZnO (p ∼ 1018cm-3) was grown on sapphire(0 0 0 1) substrate by metal-organic chemical vapor deposition method. Ni/Au metal was evaporated on the ZnO film to form contacts. As-deposited contacts were rectifying while ohmic behavior was achieved after thermally annealing the contacts in nitrogen environment. Specific contact resistance was determined by circular transmission line method and a minimum specific contact resistance of 8 × 10−4 Ω cm2 was obtained for the sample annealed at 650 °C for 30 s. However, Hall effect measurements indicate that, as the rapid thermal annealing temperature increased up to 550 °C or higher the samples’ conductive type have changed from p-type to n-type, which may be due to the instability nature of the present-day p-type N-doped ZnO or the dissociation of ZnO caused by annealing process in N2 ambient. Evolution of the sample's electric characteristics and the increment of metal/semiconductor interface states induced by rapid thermal annealing process are supposed to be responsible for the improvement of electrical properties of Au/Ni/ZnO.  相似文献   

3.
We have developed the advanced nitric acid oxidation of Si (NAOS) method to form relatively thick (5-10 nm) SiO2/Si structure with good electrical characteristics. This method simply involves immersion of Si in 68 wt% nitric acid aqueous solutions at 120 °C with polysilazane films. Fourier transform infrared absorption (FT-IR) measurements show that the atomic density of the NAOS SiO2 layer is considerably high even without post-oxidation anneal (POA), i.e., 2.28 × 1022 atoms/cm2, and it increases by POA at 400 °C in wet-oxygen (2.32 × 1022 atoms/cm2) or dry-oxygen (2.30 × 1022 atoms/cm2). The leakage current density is considerably low (e.g., 10−5 A/cm2 at 8 MV/cm) and it is greatly decreased (10−8 A/cm2 at 8 MV/cm) by POA at 400 °C in wet-oxygen. POA in wet-oxygen increases the atomic density of the SiO2 layer, and decreases the density of oxide fixed positive charges.  相似文献   

4.
Sandwich-structure Al2O3/HfO2/Al2O3 gate dielectric films were grown on ultra-thin silicon-on-insulator (SOI) substrates by vacuum electron beam evaporation (EB-PVD) method. AFM and TEM observations showed that the films remained amorphous even after post-annealing treatment at 950 °C with smooth surface and clean silicon interface. EDX- and XPS-analysis results revealed no silicate or silicide at the silicon interface. The equivalent oxide thickness was 3 nm and the dielectric constant was around 7.2, as determined by electrical measurements. A fixed charge density of 3 × 1010 cm−2 and a leakage current of 5 × 10−7A/cm2 at 2 V gate bias were achieved for Au/gate stack /Si/SiO2/Si/Au MIS capacitors. Post-annealing treatment was found to effectively reduce trap density, but increase in annealing temperature did not made any significant difference in the electrical performance.  相似文献   

5.
3C-SiC(0 0 1) surfaces are considerably rough with the roughness root mean square value (Rms) of 1.3 nm, but the surfaces become considerably smooth (i.e., Rms of 0.5 nm) by heat treatment in pure hydrogen at 400 °C. Two-step nitric acid (HNO3) oxidation (i.e., immersion in ∼40 wt% HNO3 followed by that in 68 wt% HNO3) performed after the hydrogen treatment can oxidize 3C-SiC at extremely low temperature of ∼120 °C, forming thick SiO2 (e.g., 21 nm) layers. With no hydrogen treatment, the leakage current density of the 〈Al/SiO2/3C-SiC〉 metal-oxide-semiconductor (MOS) diodes is high, while that for the MOS diodes with the hydrogen treatment is considerably low (e.g., ∼10−6 A/cm2 at the forward gate bias of 1 V) due to the formation of uniform thickness SiO2 layers. The MOS diodes with the hydrogen treatment show capacitance-voltage curves with accumulation, depletion, and deep-depletion characteristics.  相似文献   

6.
The annealing temperature dependence of contact resistance and layer stability of ZrB2/Ti/Au and Ni/Au/ZrB2/Ti/Au Ohmic contacts on p-GaN is reported. The as-deposited contacts are rectifying and transition to Ohmic behavior for annealing at ≥750 °C, a significant improvement in thermal stability compared to the conventional Ni/Au Ohmic contact on p-GaN, which is stable only to <600 °C. A minimum specific contact resistance of ∼2 × 10−3 Ω cm−2 was obtained for the ZrB2/Ti/Au after annealing at 800 °C while for Ni/Au/ZrB2/Ti/Au the minimum value was 10−4 Ω cm−2 at 900 °C. Auger Electron Spectroscopy profiling showed significant Ti, Ni and Zr out diffusion at 750 °C in the Ni/Au/ZrB2/Ti/Au while the Ti and Zr intermix at 900 °C in the ZrB2/Ti/Au. These boride-based contacts show promise for contacts to p-GaN in high temperature applications.  相似文献   

7.
K0.5Bi0.5TiO3 thin films were deposited on fused quartz, n-type Si(100) and Pt/TiO2/SiO2/Si substrates by repeated coating/dying cycles. X-ray diffraction analysis shows that the films annealed at 700 °C for 10 min present perovskite phase. Atomic force microscopy reveals that the surface morphology is smooth, the grain sizes of the films on Si(100) are quite larger than on fused quartz. The capacitance-voltage hysteresis loops at various sweeping speed are collected as are polarization types. The films in the ON and OFF states are relatively stable. The films also exhibit a hysteresis loop at an applied voltage of 4 V, with a remanent polarization of 9.3 μC/cm2 and a coercive voltage of 2 V. The insulating property of negative bias voltage is better than that of positive bias voltage. The transmittance of the films is between 74 and 82% in the wavelength range of 200-2000 nm.  相似文献   

8.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

9.
We have developed low temperature formation methods of SiO2/Si and SiO2/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO3 aqueous solutions at 120 °C), an ultrathin (i.e., 1.3-1.4 nm) SiO2 layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 °C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 °C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO2 gap-state density, and (iii) high band discontinuity energy at the SiO2/Si interface arising from the high atomic density of the NAOS SiO2 layer.For the formation of a relatively thick (i.e., ≥10 nm) SiO2 layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in ∼40 wt% HNO3 and azeotropic HNO3 aqueous solutions, respectively. In this case, the SiO2 formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO2 layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO2 layer is slightly higher than that for thermal oxide. When PMA at 250 °C in hydrogen is performed on the two-step NAOS SiO2 layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 °C.A relatively thick (i.e., ≥10 nm) SiO2 layer can also be formed on SiC at 120 °C by use of the two-step NAOS method. With no treatment before the NAOS method, the leakage current density is very high, but by heat treatment at 400 °C in pure hydrogen, the leakage current density is decreased by approximately seven orders of magnitude. The hydrogen treatment greatly smoothens the SiC surface, and the subsequent NAOS method results in the formation of an atomically smooth SiO2/SiC interface and a uniform thickness SiO2.  相似文献   

10.
The purpose of this paper is to report some experimental results with HfSiO films formed on silicon substrates by electron beam evaporation (EB-PVD) and annealed at different temperatures. The images of atomic force microscope (AFM) indicated that HfSiO film annealed at 900 °C was still amorphous, with a surface roughness of 0.173 nm. X-ray photoelectron spectroscopy (XPS) analysis revealed that the chemical composition of the film was (HfO2)3(SiO2) and Hf-Si-O bonds existed in the annealed film. Electrical measurements showed that the equivalent oxide thickness (EOT) was 4 nm, the dielectric constant was around 6, the breakdown voltage was 10 MV/cm, the fixed charge density was −1.2 × 1012 cm−2, and the leakage current was 0.4 μA/cm2 at the gate bias of 2 V for 6 nm HfSiO film. The annealing after deposition effectively reduced trapping density and the leakage current, and eliminated hysteresis in the C-V curves. Annealing also induced SiO2 growth at the interface.  相似文献   

11.
The use of a TiB2 diffusion barrier for Ni/Au contacts on p-GaN is reported. The annealing temperature (25-950 °C) dependence of ohmic contact characteristics using a Ni/Au/TiB2/Ti/Au metallization scheme deposited by sputtering were investigated by contact resistance measurements and auger electron spectroscopy (AES). The as-deposited contacts are rectifying and transition to ohmic behavior for annealing at ≥500 °C . A minimum specific contact resistivity of ∼3 × 10−4 Ω cm−2 was obtained after annealing over a broad range of temperatures (800-950 °C for 60 s). The contact morphology became considerably rougher at the higher end of this temperature range. AES profiling showed significant Ti and Ni outdiffusion through the TiB2 at 800 °C. By 900 °C the Ti was almost completely removed to the surface, where it became oxidized. Use of the TiB2 diffusion barrier produces superior thermal stability compared to the more common Ni/Au, whose morphology degrades significantly above 500 °C.  相似文献   

12.
The layered n-InSe(:Sn) single crystal samples have been cleaved from a large crystal ingot grown from non-stoichiometric melt by the Bridgman-Stockbarger method. It has been made the absorption measurements of these samples without Schottky contact under electric fields of 0.0 and 6000 V cm−1. The band gap energy value of the InSe:Sn has been calculated as 1.36 ± 0.01 eV (at 10 K) and 1.28 ± 0.01 eV (at 300 K) under zero electrical field, and 1.31 ± 0.01 eV (at 10 K) and 1.26 ± 0.01 eV (at 300 K) under 6000 Vcm−1. The current-voltage (I-V) characteristics of Au-Ge/InSe(:Sn)/In Schottky diodes have been measured in the temperature range 80-320 K with a temperature step of 20 K. An experimental barrier height (BH) Φap value of about 0.70 ± 0.01 eV was obtained for the Au-Ge/InSe(:Sn)/In Schottky diode at the room temperature (300 K). An abnormal decrease in the experimental BH Φb and an increase in the ideality factor n with a decrease in temperature have been explained by the barrier inhomogeneities at the metal-semiconductor interface. From the temperature-dependent I-V characteristics of the Au-Ge/InSe(:Sn)/In contact, that is, and A* as 0.94 ± 0.02 and 0.58 ± 0.02 eV, and 27 ± 2 and 21 ± 1 (A/cm2 K2), respectively, have been calculated from a modified versus 1/T plot for the two temperature regions. The Richardson constant values are about two times larger than the known value of 14.4 (A/cm2 K2) known for n-type InSe. Moreover, in the temperature range 80-320 K, we have also discussed whether or not the current through the junction has been connected with TFE.  相似文献   

13.
A W/Ti/Au multilayer scheme has been fabricated for achieving thermally stable low-resistance ohmic contact to n-type GaN (4.0 × 1018 cm−3). It is shown that the as-deposited W/Ti/Au contact exhibits near linear I-V behaviour. However, annealing at temperature below 800 °C the contacts exhibit non-linear behaviour. After annealing at a temperature in excess of 850 °C, the W/Ti/Au contact showed ohmic behaviour. The W/Ti/Au contact produced specific contact resistance as low as 6.7 × 10−6 Ω cm2 after annealing at 900 °C for 1 min in a N2 ambient. It is noted that the specific contact resistance decreases with increase in annealing temperature. It is also noted that annealing the contacts at 900 °C for 30 min causes insignificant degradation of the electrical and thermal properties. It is further shown that the overall surface morphology of the W/Ti/Au stayed fairly smooth even after annealing at 900 °C. The W/Ti/Au ohmic contact showed good edge sharpness after annealing at 900 °C for 30 min. Based on the Auger electron spectroscopy and glancing angle X-ray diffraction results, possible explanation for the annealing dependence of the specific contact resistance of the W/Ti/Au contacts are described and discussed.  相似文献   

14.
Thin CuInSe2 films have been prepared by electrodeposition from a single bath aqueous solution on both dense and nanoporous TiO2. The films are deposited potentiostatically using a N2-purged electrolyte at different potentials. Various deposition times and solution compositions have been employed. The effect of annealing in air and in argon at different temperatures and times is also investigated. Thin films and nanocomposites of TiO2 and CuInSe2 have been studied with electron microscopy, X-ray diffraction, Raman spectroscopy, and optical absorption spectroscopy. After a thermal anneal in argon at 350 °C for 30 min excellent CuInSe2 is obtained. In particular the nominal crystal structure and the bandgap of 1.0 eV are found. Although pinholes are present occasionally, good samples with diode curves showing a rectification ratio of 24 at ±1 V are obtained. Upon irradiation with simulated solar light of 1000 W m−2 a clear photoconductivity response is observed. Furthermore, also some photovoltaic energy conversion is found in TiO2|CuInSe2 nanocomposites.  相似文献   

15.
We have designed a promising contact scheme to p-GaN. Au/NiOx layers with a low concentration of O in NiOx are deposited on p-GaN by reactive dc magnetron sputtering and annealed in N2 and in a mixture of O2 + N2 to produce low resistivity ohmic contacts. Annealing has been studied of NiOx layers with various contents of oxygen upon the electrical properties of Au/NiOx/p-GaN. It has been found that the Au/NiOx/p-GaN structure with a low content of oxygen in NiOx layer provides a low resistivity ohmic contact even after subsequent annealing in N2 or O2 + N2 ambient at 500 °C for 2 min.Auger depth profiles and transmission electron microscopy (TEM) micrographs reveal that while annealing in O2 + N2 ambient results in reconstruction of the initial deposited Au/NiOx/p-GaN contact structure into a Au/p-NiO/p-GaN structure, annealing in N2 brings about reconstruction into Au/p-NiO/p-GaN and Ni/p-NiO/p-GaN structures. Hence, in both cases, after annealing in N2 as well as in O2 + N2 ambient, the ohmic properties of the contacts are determined by creation of a thin oxide layer (p-NiO) on the metal/p-GaN interface. Higher contact resistivities in the samples annealed in O2 + N2 ambient are most likely caused by a smaller effective area of the contact due to creation of voids.  相似文献   

16.
Rare earth doped NaLa(WO4)2 nanoparticles have been prepared by a simply hydrothermal synthesis procedure. The X-ray diffraction (XRD) pattern shows that the Eu3+-doped NaLa(WO4)2 nanoparticles with an average size of 10-30 nm can be obtained via hydrothermal treatment for different time at 180 °C. The luminescence intensity of Eu3+-doped NaLa(WO4)2 nanoparticles depended on the size of the nanoparticles. The bright upconversion luminescence of the 2 mol% Er3+ and 20 mol% Yb3+ codoped NaLa(WO4)2 nanoparticles under 980 nm excitation could also be observed. The Yb3+-Er3+ codoped NaLa(WO4)2 nanoparticles prepared by the hydrothermal treatment at 180 °C and then heated at 600 °C shows a 20 times stronger upconversion luminescence than those prepared by hydrothermal treatment at 180 °C or by hydrothermal treatment at 180 °C and then heated at 400 °C.  相似文献   

17.
L. Shi 《Applied Surface Science》2007,253(7):3731-3735
As a potential gate dielectric material, the La2O3 doped SiO2 (LSO, the mole ratio is about 1:5) films were fabricated on n-Si (0 0 1) substrates by using pulsed laser deposition technique. By virtue of several measurements, the microstructure and electrical properties of the LSO films were characterized. The LSO films keep the amorphous state up to a high annealing temperature of 800 °C. From HRTEM and XPS results, these La atoms of the LSO films do not react with silicon substrate to form any La-compound at interfacial layer. However, these O atoms of the LSO films diffuse from the film toward the silicon substrate so as to form a SiO2 interfacial layer. The thickness of SiO2 layer is only about two atomic layers. A possible explanation for interfacial reaction has been proposed. The scanning electron microscope image shows the surface of the amorphous LSO film very flat. The LSO film shows a dielectric constant of 12.8 at 1 MHz. For the LSO film with thickness of 3 nm, a small equivalent oxide thickness of 1.2 nm is obtained. The leakage current density of the LSO film is 1.54 × 10−4 A/cm2 at a gate bias voltage of 1 V.  相似文献   

18.
To reveal the influence of erbium interlayer on the formation of nickel silicide and its contact properties on Si substrate, Er(0.5-3.0 nm) and Ni(20 nm) are successively deposited onto Si(1 0 0) substrate and are treated by rapid thermal annealing in pure N2 ambient. The NiSi formation temperature is found to increase depending on the Er interlayer thickness. The formation temperature of NiSi2 (700 °C) is not influenced by Er addition. But with 2 nm Er interlayer, the formed NiSi2 is observed textured with preferred orientation of (1 0 0). During the formation of NiSi, Er segregates to the surface and little Er remains at the NiSi/Si(1 0 0) interface. Therefore, the Schottky barrier height of the formed NiSi/n-Si(1 0 0) contact is measured to be 0.635 ∼ 0.665 eV which is nearly invariable with different Er addition.  相似文献   

19.
There is a strong interest in developing thermally stable metallization schemes for ZnO and boride-based contact stacks are expected to have potential because of their thermodynamic stability. The contact characteristics on bulk single-crystal n-ZnO of a ZrB2/Pt/Au metallization scheme deposited by sputtering are reported as a function of annealing temperature in the range 300-800°C. The contacts were rectifying for anneal temperatures <500 °C but exhibited Ohmic behavior at higher temperatures and exhibit a minimum specific contact resistivity of 9 × 10−3 Ω cm after 700 °C anneals. The contact stack reverts to rectifying behavior after annealing above 800 °C, coincident with a degraded surface morphology and intermixing of the Au, Pt and ZrB2. The boride-based contacts exhibit higher thermal stability but poorer specific contact resistivity than conventional Ti/Au metal stacks on ZnO.  相似文献   

20.
Ohmic contacts were formed on n-GaAs using thin evaporated layers of Te followed by bombardment of 100 keV Ar+ ions. The specific contact resistance c showed a strong dependence on the ion dose in the range 1014 to 1016 ions cm–2, with higher doses leading to progressively lower specific contact resistance. The substrate temperature during ion bombardment was varied in the range from 25 to 200° C and was found to have only a minor effect on the resultant values of c. Elevated temperature aging of the Ohmic contacts at 200° C resulted in a progressive increase in the specific contact resistance, independent of either the ion dose or the substrate temperature used for ion beam mixing. Rutherford backscattering studies (RBS) indicate that the Ohmic contact behaviour was due to the in-diffusion of Te and subsequent formation of a heavily doped n + layer at the Te-GaAs interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号