首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The paper deals with a numerical analysis of the effect of textural anisotropy on the behaviour of cohesionless granular materials with consideration of shear localization. For a simulation of the mechanical behaviour of a granular material during a monotonic deformation path, an isotropic micro-polar hypoplastic constitutive model was used. To describe textural effects, spatially correlated random fields of the initial void ratio were subject to rotation against the horizontal axis. The 2D random fields were generated using a conditional rejection method. The results were compared with those obtained with an anisotropic micro-polar constitutive model for a uniform distribution of the initial void ratio. The calculations were carried out with an initially dense granular specimen during plane strain compression under constant lateral pressure.  相似文献   

2.
Summary By regarding geomaterials under loading as a mixture of intact and damaged parts, we investigate the influence of damage on the properties of strain localization in elastoplastic geomaterials at plane stress and plane strain. Conditions for the onset of strain localization including the effects of damage are derived for the cases of plane strain and plane stress. Discussed are the inclination of the localized band and the hardening modulus corresponding to the onset of strain localization. It is shown that the properties of the strain localization are dependent on the damage and the capacity of bearing hydrostatic pressure by the damaged part, and that damage may induce an earlier onset of strain localization and lead to instability of a geomaterial.accepted for publication 11 March 2004  相似文献   

3.
This study presents an experimental investigation of the large plastic deformation of poly(ethylene terephthalate) (PET) submitted to plane strain compression. PET samples, obtained by injection moulding, annealed and non-annealed, were deformed using a specific compression device developed for this purpose. The obtained stress–strain curves at different temperatures and strain rates are useful for engineering applications and show a significant temperature dependence and a minor dependence on the strain rate. A softening temperature as a minimum temperature necessary to initiate deformation when a minimum, almost zero, stress is applied is introduced. This temperature, at the zero stress and strain limit, we denominate “Stress–Strain independent softening Temperature (T SOF)”. The T SOF values, 104 and 113°C for non-annealed and annealed PET, respectively, have been obtained using three different strain rates, indicating that the property is sensitive to the thermal history of the material.  相似文献   

4.
In this study, effects of typical texture components observed in rolled aluminum alloy sheets on shear band formation in plane strain tension/compression and bending are systematically studied. The material response is described by a generalized Taylor-type polycrystal model, in which each grain is characterized in terms of an elastic–viscoplastic continuum slip constitutive relation. First, a simple model analysis in which the shear band is assumed to occur in a weaker thin slice of material is performed. From this simple model analysis, two important quantities regarding shear band formation are obtained: i.e. the critical strain at the onset of shear banding and the corresponding orientation of shear band. Second, the shear band development in plane strain tension/compression is analyzed by the finite element method. Predictability of the finite element analysis is compared to that of the simple model analysis. Third, shear band developments in plane strain pure bending of a sheet specimen with the typical textures are studied. Regions near the surfaces in a bent sheet specimen are approximately subjected to plane strain tension or compression. From this viewpoint, the bendability of a sheet specimen may be evaluated, using the knowledge regarding shear band formation in plane strain tension/compression. To confirm this and to encompass overall deformation of a bent sheet specimen, including shear bands, finite element analyses of plane strain pure bending are carried out, and the predicted shear band formation in bent specimens is compared to that in the tension/compression problem. Finally, the present results are compared to previous related studies, and the efficiency of the present method for materials design in future is discussed.  相似文献   

5.
The numerical investigations of size effects in granular bodies during a plane strain compression test are performed. To describe a mechanical behaviour of a cohesionless granular material during a monotonous deformation path in a plane strain compression test, a micro-polar hypoplastic constitutive model was used. It includes particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. In the paper, deterministic and statistical size effects in geometrically similar granular specimens are analysed. The deterministic calculations were carried out with a uniform distribution of the initial void ratio. To investigate a statistical size effect, in order to reduce the number of realizations without loosing the accuracy of the calculations, a Latin hypercube method was applied to generate Gaussian truncated random fields in a granular specimen. The results show that the statistical size effect is significantly stronger than the deterministic one. The shear resistance decreases and the rate of softening increases with increasing specimen size. The effect of the boundary roughness on shear localization is pronounced.  相似文献   

6.
Paper presents a FE-analysis of shear localizations in granular bodies with a finite element method based on a hypoplastic constitutive law. The law can reproduce essential features of granular bodies in dependence on the void ratio, pressure level and deformation direction. To simulate the formation of a spontaneous shear zone inside of cohesionless sand during plane strain compression, a hypoplastic law was extended by polar and non-local terms. The effect of both models on the thickness of a shear zone was compared.  相似文献   

7.
A new method is developed to determine the dominant asymptotic stress and deformation fields near the tip of a Mode-I traction free plane stress crack. The analysis is based on the fully nonlinear equilibrium theory of incompressible hyperelastic solids. We show that the dominant singularity of the near tip stress field is governed by the asymptotic solution of a linear second order ordinary differential equation. Our method is applicable to any hyperelastic material with a smooth work function that depends only on the trace of the Cauchy-Green tensor and is particularly useful for materials that exhibit severe strain hardening. We apply this method to study two types of soft materials: generalized neo-Hookean solids and a solid that hardens exponentially. For the generalized neo-Hookean solids, our method is able to resolve a difficulty in the previous work by Geubelle and Knauss (1994a). Our theoretical results are compared with finite element simulations.  相似文献   

8.
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson’s ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson’s ratio depend uniquely on the soil’s coordination number.  相似文献   

9.
In order to study the fragmentation law, the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work. It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy. Meanwhile, two particle failure modes caused by different contact force states are analyzed, which are single-through-crack failure and multi-short-crack failure. Considering the vertical distribution of the number of cracks and the four characteristic stress distributions (the stress related to the maximum contact force, the major principal stress, the deviatoric stress and the mean stress), it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately. In addition, the size effect of particle crushing indicates that small size particles are prone to break. The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage.  相似文献   

10.
The numerical analysis of plane and axially symmetric jet flows of an incompressible inviscid fluid is treated. A new formulation of the variational inequality type is developed from the variational principle associated with jet problems. A successive approximation method is formulated by the combined use of variational inequality and the finite element method. Numerical examples based on the iterative method are presented. The results obtained agree well with those by other methods.  相似文献   

11.
含抗转能力散粒体的宏微观力学特性数值分析   总被引:1,自引:0,他引:1  
颗粒间抗转因素对散粒体宏微观特性的影响十分显著。本文采用离散单元法,将蒋明镜(2005年)等提出的抗转动接触模型植入离散元分析软件PFC2D中,模拟了大量刚性边界下的砂土双轴试验,研究了压缩过程中试样的宏观力学性质及部分微观参量的变化情况,用以定性分析颗粒间抗转作用对散粒体的宏微观力学特性的影响。研究表明:颗粒间的抗转...  相似文献   

12.
The role of particle size heterogeneity on micro- and macromechanical properties of assemblies of spherical particles was studied using DEM simulations. The response to an imposed load of a granular material composed of non-uniformly sized spheres subjected to uniaxial confined compression was investigated. A range of geometrical and micro-mechanical properties of granular packings (e.g., void fraction, contact force distribution, average coordination number and degree of mobilisation of friction at contacts between particles) were examined, and provided a more accurate interpretation of the macroscopic behaviour of mixtures than has previously been available. The macromechanical study included stress transmission, stiffness and angle of internal friction of the granular assemblies.The degree of polydispersity showed slight effect on both, the void fraction and the elastic properties of the system. The tendency for increase in the lateral-to-vertical pressure ratios was observed with an increasing degree of particle size heterogeneity; however, the different pressure ratios calculated for samples with various degrees of polydispersity lay within the range of data scatter.  相似文献   

13.
In this work the relationship between the structural disorder and the macroscopic mechanical behavior of nanoporous gold under uniaxial compression was investigated, using the finite element method. A recently proposed model based on a microstructure consisting of four-coordinated spherical nodes interconnected by cylindrical struts, whose node positions are randomly displaced from the lattice points of a diamond cubic lattice, was extended. This was done by including the increased density as result of the introduced structural disorder. Scaling equations for the elastic Poisson's ratio, the Young's modulus and the yield strength were determined as functions of the structural disorder and the solid fraction. The extended model was applied to identify the elastic–plastic behavior of the solid phase of nanoporous gold. It was found, that the elastic Poisson's ratio provides a robust basis for the calibration of the structural disorder. Based on this approach, a systematic study of the size effect on the yield strength was performed and the results were compared to experimental data provided in literature. An excellent agreement with recently published results for polymer infiltrated samples of nanoporous gold with varying ligament size was found.  相似文献   

14.
The authors have very recently proposed an efficient, accurate alternative scheme to numerically evaluate etc. Green’s function, U(x), and its derivatives for three-dimensional, general anisotropic elasticity. These quantities are necessary items in the formulation of the boundary element method (BEM). The scheme is based on the double Fourier series representation of the explicit, exact, algebraic solution derived by Ting and Lee (1997) [Ting, T.C.T., Lee, V.G., 1997. The three-dimensional elastostic Green’s function for general anisotropic linear elastic solid. Q. J. Mech. Appl. Math. 50, 407–426] expressed in terms of Stroh’s eigenvalues. By taking advantage of some its characteristics, the formulations in this double Fourier series approach are revised and several of the analytical expressions are re-arranged in the present study. This results in significantly fewer terms to be summed in the series thereby improving further the efficiency for evaluating the Green’s function and its derivatives. These revised Fourier series representations of U(x) and its derivatives are employed in a BEM formulation for three-dimensional linear elastostatics. Some numerical examples are presented to demonstrate the veracity of the implementation and its applicability to the elastic stress analysis of generally anisotropic solids. The results are compared with known solutions in the literature where possible, and with those obtained using the commercial finite element code ANSYS. Excellent agreement is obtained in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号