首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of multivariate time series is a common problem in areas like finance and economics. The classical tools for this purpose are vector autoregressive models. These however are limited to the modeling of linear and symmetric dependence. We propose a novel copula‐based model that allows for the non‐linear and non‐symmetric modeling of serial as well as between‐series dependencies. The model exploits the flexibility of vine copulas, which are built up by bivariate copulas only. We describe statistical inference techniques for the new model and discuss how it can be used for testing Granger causality. Finally, we use the model to investigate inflation effects on industrial production, stock returns and interest rates. In addition, the out‐of‐sample predictive ability is compared with relevant benchmark models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Standard models for capital requirements restrict the correlation between risk factors to the linear measure and disregard undertaking-specific parameters. We consider an alternative framework for risk aggregation in non-life insurance using vine copulas that allow non-linear dependence and are estimated with undertaking-specific parameters. We empirically compare our alternative risk model with three regulatory standard models (Korean risk-based capital, Solvency II, Swiss Solvency Test) and show that the standard models lead to more than 50% higher capital requirements on average. Half of the overestimation results from the uniform parameter selection imposed by regulations and the other half comes from the linear correlation assumption. The differences might distort competition when both standard models and internal risk models are used in a single market.  相似文献   

3.
Copulas are popular as models for multivariate dependence because they allow the marginal densities and the joint dependence to be modeled separately. However, they usually require that the transformation from uniform marginals to the marginals of the joint dependence structure is known. This can only be done for a restricted set of copulas, for example, a normal copula. Our article introduces copula-type estimators for flexible multivariate density estimation which also allow the marginal densities to be modeled separately from the joint dependence, as in copula modeling, but overcomes the lack of flexibility of most popular copula estimators. An iterative scheme is proposed for estimating copula-type estimators and its usefulness is demonstrated through simulation and real examples. The joint dependence is modeled by mixture of normals and mixture of normal factor analyzer models, and mixture of t and mixture of t-factor analyzer models. We develop efficient variational Bayes algorithms for fitting these in which model selection is performed automatically. Based on these mixture models, we construct four classes of copula-type densities which are far more flexible than current popular copula densities, and outperform them in a simulated dataset and several real datasets. Supplementary material for this article is available online.  相似文献   

4.
Reliability analysis requires modeling of joint probability distribution of uncertain parameters, which can be a challenge since the random variables representing the parameter uncertainties may be correlated. For convenience, a Gaussian data dependence is commonly assumed for correlated random variables. This paper first investigates the effect of multidimensional non-Gaussian data dependences underlying the multivariate probability distribution on reliability results. Using different bivariate copulas in a vine structure, various data dependences can be modeled. The associated copula parameters are identified from available statistical information by moment matching techniques. After the development of the vine copula model for representing the multivariate probability distribution, the reliability involving correlated random variables is evaluated based on the Rosenblatt transformation. The impact of data dependence is significant because a large deviation in failure probability is observed, which emphasizes the need for accurate dependence characterization. A practical method for dependence modeling based on limited data is thus provided. The result demonstrates that the non-Gaussian data dependences can be real in practice, and the reliability can be biased if the Gaussian dependence is used inappropriately. Moreover, the effect of conditioning order on reliability should not be overlooked except that the vine structure contains only one type of copula.  相似文献   

5.
Tail dependence and conditional tail dependence functions describe, respectively, the tail probabilities and conditional tail probabilities of a copula at various relative scales. The properties as well as the interplay of these two functions are established based upon their homogeneous structures. The extremal dependence of a copula, as described by its extreme value copulas, is shown to be completely determined by its tail dependence functions. For a vine copula built from a set of bivariate copulas, its tail dependence function can be expressed recursively by the tail dependence and conditional tail dependence functions of lower-dimensional margins. The effect of tail dependence of bivariate linking copulas on that of a vine copula is also investigated.  相似文献   

6.
We describe a new algorithm for the computation of the score function and observed information in regular vine (R-vine) copula models. R-vine copulas are constructed hierarchically from bivariate copulas as building blocks only, and the algorithm exploits this hierarchical nature for subsequent computation of log-likelihood derivatives. This allows to routinely estimate standard errors of parameter estimates, and overcomes reliability and accuracy issues associated with numerical differentiation in multidimensional models. Results obtained using the proposed methods are discussed in the context of the asymptotic efficiency of different estimation methods and of an application to exchange rate data.  相似文献   

7.
Conditional Value at Risk (CVaR) is widely used in portfolio optimization as a measure of risk. CVaR is clearly dependent on the underlying probability distribution of the portfolio. We show how copulas can be introduced to any problem that involves distributions and how they can provide solutions for the modeling of the portfolio. We use this to provide the copula formulation of the CVaR of a portfolio. Given the critical dependence of CVaR on the underlying distribution, we use a robust framework to extend our approach to Worst Case CVaR (WCVaR). WCVaR is achieved through the use of rival copulas. These rival copulas have the advantage of exploiting a variety of dependence structures, symmetric and not. We compare our model against two other models, Gaussian CVaR and Worst Case Markowitz. Our empirical analysis shows that WCVaR can asses the risk more adequately than the two competitive models during periods of crisis.  相似文献   

8.
Bivariate nonstrict Archimedean copulas form a subclass of Archimedean copulas and are able to model the dependence structure of random variables that do not take on low quantiles simultaneously; i.e. their domain includes a set, the so‐called zero set, with positive Lebesgue measure but zero probability mass. Standard methods to fit a parametric Archimedean copula, e.g. classical maximum likelihood estimation, are either getting computationally more involved or even fail when dealing with this subclass. We propose an alternative method for estimating the parameter of a nonstrict Archimedean copula that is based on the zero set and the functional form of its boundary curve. This estimator is fast to compute and can be applied to absolutely continuous copulas but also allows singular components. In a simulation study, we compare its performance to that of the standard estimators. Finally, the estimator is applied when modeling the dependence structure of quantities describing the quality of transmission in a quantum network, and it is shown how this model can be used effectively to detect potential intruders in this network. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
We propose a new variational Bayes (VB) estimator for high-dimensional copulas with discrete, or a combination of discrete and continuous, margins. The method is based on a variational approximation to a tractable augmented posterior and is faster than previous likelihood-based approaches. We use it to estimate drawable vine copulas for univariate and multivariate Markov ordinal and mixed time series. These have dimension rT, where T is the number of observations and r is the number of series, and are difficult to estimate using previous methods. The vine pair-copulas are carefully selected to allow for heteroscedasticity, which is a feature of most ordinal time series data. When combined with flexible margins, the resulting time series models also allow for other common features of ordinal data, such as zero inflation, multiple modes, and under or overdispersion. Using six example series, we illustrate both the flexibility of the time series copula models and the efficacy of the VB estimator for copulas of up to 792 dimensions and 60 parameters. This far exceeds the size and complexity of copula models for discrete data that can be estimated using previous methods. An online appendix and MATLAB code implementing the method are available as supplementary materials.  相似文献   

10.
A useful application for copula functions is modeling the dynamics in the conditional moments of a time series. Using copulas, one can go beyond the traditional linear ARMA (p,q) modeling, which is solely based on the behavior of the autocorrelation function, and capture the entire dependence structure linking consecutive observations. This type of serial dependence is best represented by a canonical vine decomposition, and we illustrate this idea in the context of emerging stock markets, modeling linear and nonlinear temporal dependences of Brazilian series of realized volatilities. However, the analysis of intraday data collected from e‐markets poses some specific challenges. The large amount of real‐time information calls for heavy data manipulation, which may result in gross errors. Atypical points in high‐frequency intraday transaction prices may contaminate the series of daily realized volatilities, thus affecting classical statistical inference and leading to poor predictions. Therefore, in this paper, we propose to robustly estimate pair‐copula models using the weighted minimum distance and the weighted maximum likelihood estimates (WMLE). The excellent performance of these robust estimates for pair‐copula models are assessed through a comprehensive set of simulations, from which the WMLE emerged as the best option for members of the elliptical copula family. We evaluate and compare alternative volatility forecasts and show that the robustly estimated canonical vine‐based forecasts outperform the competitors. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
It is no longer uncommon these days to find the need in actuarial practice to model claim counts from multiple types of coverage, such as the ratemaking process for bundled insurance contracts. Since different types of claims are conceivably correlated with each other, the multivariate count regression models that emphasize the dependency among claim types are more helpful for inference and prediction purposes. Motivated by the characteristics of an insurance dataset, we investigate alternative approaches to constructing multivariate count models based on the negative binomial distribution. A classical approach to induce correlation is to employ common shock variables. However, this formulation relies on the NB-I distribution which is restrictive for dispersion modeling. To address these issues, we consider two different methods of modeling multivariate claim counts using copulas. The first one works with the discrete count data directly using a mixture of max-id copulas that allows for flexible pair-wise association as well as tail and global dependence. The second one employs elliptical copulas to join continuitized data while preserving the dependence structure of the original counts. The empirical analysis examines a portfolio of auto insurance policies from a Singapore insurer where claim frequency of three types of claims (third party property damage, own damage, and third party bodily injury) are considered. The results demonstrate the superiority of the copula-based approaches over the common shock model. Finally, we implemented the various models in loss predictive applications.  相似文献   

12.
Parametric models for tail copulas are being used for modeling tail dependence and maximum likelihood estimation is employed to estimate unknown parameters. However, two important questions seem unanswered in the literature: (1) What is the asymptotic distribution of the MLE and (2) how does one test the parametric model? In this paper, we answer these two questions in the case of a single parameter for ease of illustration. A simulation study is provided to investigate the finite sample performance of the proposed estimator and test.  相似文献   

13.
The vector autoregressive (VAR) model has been widely used for modeling temporal dependence in a multivariate time series. For large (and even moderate) dimensions, the number of the AR coefficients can be prohibitively large, resulting in noisy estimates, unstable predictions, and difficult-to-interpret temporal dependence. To overcome such drawbacks, we propose a two-stage approach for fitting sparse VAR (sVAR) models in which many of the AR coefficients are zero. The first stage selects nonzero AR coefficients based on an estimate of the partial spectral coherence (PSC) together with the use of BIC. The PSC is useful for quantifying the conditional relationship between marginal series in a multivariate process. A refinement second stage is then applied to further reduce the number of parameters. The performance of this two-stage approach is illustrated with simulation and real data examples. Supplementary materials for this article are available online.  相似文献   

14.
Modeling defaults with nested Archimedean copulas   总被引:1,自引:0,他引:1  
In 2001, Schönbucher and Schubert extended Li’s well-known Gaussian copula model for modeling dependent defaults to allow for tail dependence. Instead of the Gaussian copula, Schönbucher and Schubert suggested to use Archimedean copulas. These copulas are able to capture tail dependence and therefore allow a standard intensity-based default model to have a positive probability of joint defaults within a short time period. As can be observed in the current financial crisis, this is an indispensable feature of any realistic default model. Another feature, motivated by empirical observations but rarely taken into account in default models, is that modeled portfolio components affected by defaults show significantly different levels of dependence depending on whether they belong to the same industry sector or not. The present work presents an extension of the model suggested by Schönbucher and Schubert to account for this fact. For this, nested Archimedean copulas are applied. As an application, the pricing of collateralized debt obligations is treated. Since the resulting loss distribution is not analytical tractable, fast sampling algorithms for nested Archimedean copulas are developed. Such algorithms boil down to sampling certain distributions given by their Laplace-Stieltjes transforms. For a large range of nested Archimedean copulas, efficient sampling techniques can be derived. Moreover, a general transformation of an Archimedean generator allows to construct and sample the corresponding nested Archimedean copulas.  相似文献   

15.
Bayesian Model Choice of Grouped t-Copula   总被引:1,自引:0,他引:1  
One of the most popular copulas for modeling dependence structures is t-copula. Recently the grouped t-copula was generalized to allow each group to have one member only, so that a priori grouping is not required and the dependence modeling is more flexible. This paper describes a Markov chain Monte Carlo (MCMC) method under the Bayesian inference framework for estimating and choosing t-copula models. Using historical data of foreign exchange (FX) rates as a case study, we found that Bayesian model choice criteria overwhelmingly favor the generalized t-copula. In addition, all the criteria also agree on the second most likely model and these inferences are all consistent with classical likelihood ratio tests. Finally, we demonstrate the impact of model choice on the conditional Value-at-Risk for portfolios of six major FX rates.  相似文献   

16.
Dynamic hedging used to mitigate the financial risks associated with large portfolios of variable annuities requires calculating partial dollar deltas on major market indices. Metamodeling approaches have been proposed in the past few years to address the computational issues related to the calculation of partial dollar deltas. In this paper, we investigate whether the additional complication of modeling the dependence between the partial dollar deltas improves the accuracy of the metamodeling approaches. We use several copulas to model the dependence structures of the partial dollar deltas and conduct numerical experiments to compare different metamodels. Despite the evidence of strong dependence in the estimated models, our numerical results show that modeling the dependence structures in the metamodels does not improve the accuracy of the estimations at the portfolio level. This is because the dependence between the partial dollar deltas is well captured by the covariates used in the marginal models. This finding suggests that we should focus more on marginal models than specifying the dependence structure explicitly.  相似文献   

17.
There is an infinite number of parameters in the definition of multivariate maxima of moving maxima (M4) processes, which poses challenges in statistical applications where workable models are preferred. This paper establishes sufficient conditions under which an M4 process with infinite number of parameters may be approximated by an M4 process with finite number of parameters. In statistical inferences, the paper focuses on a family of sectional multivariate extreme value copula (SMEVC) functions which is derived from the joint distribution functions of M4 processes. A new non-standard parameter estimation procedure is introduced, which is based on order statistics of ratios of (transformed) marginal unit Fréchet random variables, and is shown via simulation to be more efficient than a semi-parametric estimation procedure. In real data analysis, empirical results show that SMEVCs are more flexible for modeling various dependence structures, and perform better than the widely used Gumbel-Hougaard copulas.  相似文献   

18.
Copulas offer a useful tool in modelling the dependence among random variables. In the literature, most of the existing copulas are symmetric while data collected from the real world may exhibit asymmetric nature. This necessitates developing asymmetric copulas that can model such data. In the meantime, existing methods of modelling two-dimensional reliability data are not able to capture the tail dependence that exists between the pair of age and usage, which are the two dimensions designated to describe product life. This paper proposes a new method of constructing asymmetric copulas, discusses the properties of the new copulas, and applies the method to fit two-dimensional reliability data that are collected from the real world.  相似文献   

19.
Tails of correlation mixtures of elliptical copulas   总被引:1,自引:0,他引:1  
Correlation mixtures of elliptical copulas arise when the correlation parameter is driven itself by a latent random process. For such copulas, both penultimate and asymptotic tail dependence are much larger than for ordinary elliptical copulas with the same unconditional correlation. Furthermore, for Gaussian and Student t-copulas, tail dependence at sub-asymptotic levels is generally larger than in the limit, which can have serious consequences for estimation and evaluation of extreme risk. Finally, although correlation mixtures of Gaussian copulas inherit the property of asymptotic independence, at the same time they fall in the newly defined category of near asymptotic dependence. The consequences of these findings for modeling are assessed by means of a simulation study and a case study involving financial time series.  相似文献   

20.
Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical models, which combine the distributional flexibility of pair-copula constructions (PCCs) with the parsimony of conditional independence models associated with directed acyclic graphs (DAGs). We are first to provide generic algorithms for random sampling and likelihood inference in arbitrary PCBNs as well as for selecting orderings of the parents of the vertices in the underlying graphs. Model selection of the DAG is facilitated using a version of the well-known PC algorithm that is based on a novel test for conditional independence of random variables tailored to the PCC framework. A simulation study shows the PC algorithm’s high aptitude for structure estimation in non-Gaussian PCBNs. The proposed methods are finally applied to modeling financial return data. Supplementary materials for this article are available online.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号