首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New functionalizations of indoles via palladium-catalyzed reaction of indoles and 2-acetoxymethyl-substituted electron-deficient alkenes are reported. It was found that for N-protected indoles the reaction proceeded smoothly in the presence of 5 mol % of Pd(acac)2 and 10 mol % of PPh3 at 80 degrees C in HOAc, while for N-unprotected indoles, the reaction was carried out by using 5 mol % of Pd(dba)2 or 2.5 mol % of Pd2(dba)3.CHCl3 with 10 mol % of 2,2'-bipyridine as the catalyst in toluene. This strategy allows the selective installation of electron-deficient olefin functionality at the 3-position of indoles, which might be difficult to obtain by other methods and can be further elaborated.  相似文献   

2.
[reaction: see text] Propargylic diisopropylamines containing heterocycles, which were prepared readily from heterocyclic bromides and propargyldiisopropylamine by the Sonogashira coupling reaction, underwent the allene transformation reaction in the presence of Pd(2)(dba)(3).CHCl(3) catalyst (2.5 mol %) and 1,2-bis[bis(pentafluorophenyl)phosphino]ethane (10 mol %) at 100 degrees C in CHCl(3), giving the corresponding heterocyclic allenes in good to high yields via the palladium-catalyzed hydride-transfer reaction.  相似文献   

3.
The three-component aminoallylation reaction of the activated olefins 2 with the phthalimide 1a and allyl chloride proceeded very smoothly in the presence of Pd(2)dba(3).CHCl(3) (5 mol %)/P(4-FC(6)H(4))(3) (40 mol %) and Cs(2)CO(3) (3 equiv against 2) in dichloromethane at room temperature to give the corresponding aminoallylated products, N-pent-4-enylphthalimides 3, in 58-99% yields. The reaction of oxazolidinone 1b also proceeded very smoothly to give N-(2,2-dicyano-1-phenylpent-4-enyl)oxazolidinone in a quantitative yield; however, the Tsuji-Trost-type allylation products 4 were obtained in the case of dibenzylamine, N-tosylaniline, and pyrrolidin-2-one. Further, 2 underwent cycloaddition with N-tosylvinylaziridine 9a in the presence of Pd(2)dba(3).CHCl(3) (5 mol %)/P(4-FC(6)H(4))(3) (40 mol %) in THF at room temperature, giving the corresponding pyrrolidines 11 in 69-99% yields.  相似文献   

4.
[reaction: see text] A highly efficient carbonylative Suzuki-Miyaura coupling reaction of lactam-derived vinyl triflates and alkenylboronic acids afforded 2-(N-methoxycarbonylamino)-1,4-pentadien-3-ones as suitable substrates for the Nazarov reaction. The most competent Lewis acids for the Nazarov reaction were Cu(OTf)(2) (2 mol %) and Sc(OTf)(3) (3 mol %) in DCE, which provided the Nazarov products in excellent yield. As both the carbonylative coupling and the subsequent Nazarov reaction were high yielding, the overall methodology is a concise and efficient route to [1]pyrindine systems.  相似文献   

5.
A general catalytic allylation of simple ketoimines was developed using 1 mol % of CuF.3PPh(3) as catalyst, 1.5 mol % of La(O(i)Pr)(3) as the cocatalyst, and stable and nontoxic allylboronic acid pinacol ester as the nucleophile. This reaction constituted a good template for developing the first catalytic enantioselective allylation of ketoimines. In this case, using LiO(i)Pr as the cocatalyst produced higher enantioselectivity and reactivity than La(O(i)Pr)(3). Thus, using the CuF-cyclopentyl-DuPHOS complex (10 mol %) and LiO(i)Pr (30 mol %) in the presence of (t)BuOH (1 equiv) produced high enantioselectivity up to 93% ee from a range of aromatic ketoimines. Mechanistic studies indicated that LiO(i)Pr accelerates the reaction by increasing the concentration of an active nucleophile, allylcopper.  相似文献   

6.
Significant levels of enantioselectivity were obtained in 1,3-dipolar cycloadditions of 2-benzopyrylium-4-olate generated from the Rh(2)(OAc)(4)-catalyzed decomposition of o-methoxycarbonyl-alpha-diazoacetophenone. This reaction utilized chiral 2,6-bis(oxazolinyl)pyridine (Pybox)--rare earth metal triflate complexes as chiral Lewis acid catalysts. The reactions with several benzyloxyacetaldehyde derivatives catalyzed by a Sc(III)--Pybox-i-Pr complex (10 mol %) proceeded smoothly to yield endo-adducts selectively with high enantioselectivity (up to 93% ee). For the reaction with benzyl pyruvate, the Sc(III)-Pybox-i-Pr complex (10 mol %) catalyzed the reaction effectively in the presence of trifluoroacetic acid (10 mol %) to yield an exo-adduct with both high diastereo- and enantioselectivity (94% ee). This catalytic system was efficiently applied to the reactions with several other alpha-keto esters with high exo- and enantioselectivities (up to 95% ee). In contrast to the reaction with carbonyl compounds, Yb(III)--Pybox-Ph complex (10 mol %) was found to be effective to obtain high enantioselectivity (96% ee) of diastereoselectively produced exo-cycloadduct in the reaction with 3-acryloyl-2-oxazolidinone.  相似文献   

7.
The first palladium-catalyzed ring-expansion reaction of 2-vinylpyrrolidines with aryl isocyanates to form seven-membered ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of dppp at 40-60 degrees C in THF and results in the formation of 1,3-diazepin-2-ones in good isolated yields. When Pd(OAc)(2) and PPh(3) were utilized in the reaction, an intramolecular hydrogen migration occurs resulting in the formation of conjugated diene derivatives of urea.  相似文献   

8.
The palladium-catalyzed three-component coupling (TCC) reaction of cyano compounds, allyl methyl carbonate, and trimethylsilyl azide under a catalytic amount of Pd2(dba)3.CHCl3 (2.5 mol %) and tri(2-furyl)phosphine (10 mol %) gave various kinds of 2-allyltetrazoles in good to excellent yields. A pi-allylpalladium azide complex is proposed as a key intermediate in the TCC reaction.  相似文献   

9.
The palladium-catalyzed three-component coupling reaction (TCCR) of aryl isocyanides, allyl methyl carbonate, and trimethylsilyl azide was conducted in the presence of Pd(2)(dba)(3).CHCl(3) (2.5 mol %) and dppe (1,2-bis(diphenylphosphino)ethane) (10 mol %). Allyl aryl cyanamides with a wide variety of functional groups were obtained in excellent yields. This palladium-catalyzed TCCR was further utilized for the synthesis of N-cyanoindoles. The reaction of 2-alkynylisocyanobenzenes, allyl methyl carbonate, and trimethylsilyl azide in the presence of Pd(2)(dba)(3).CHCl(3) (2.5 mol %) and tri(2-furyl)phosphine (10 mol %) at higher temperatures afforded N-cyanoindoles in good to allowable yields. (eta(3)-Allyl)(eta(3)-cyanamido)palladium complex, an analogue of the bis-pi-allylpalladium complex, is a key intermediate in the TCCR, and a pi-allylpalladium mimic of the Curtius rearrangement is involved to generate the (eta(3)-allyl)(eta(3)-cyanamido)palladium intermediate.  相似文献   

10.
We report a new and efficient ruthenium-catalyzed reaction that transforms ethynyl alcohol into alkene and carbon monoxide. The most efficient catalysts are TpRu(PPh3)(CH3CN)2PF6 (10 mol %) and lithium triflate (20 mol %). The mechanism of this reaction was elucidated using an isotope-labeling experiment.  相似文献   

11.
The palladium complexes catalyzed intramolecular hydroamidation reaction of amidoalkynes gives the corresponding lactams in good to high yields. For example, in the presence of 10 mol % of Pd(PPh3)4 and 20 mol % of PhCOOH, the reaction of the amidoalkyne 3a in 1,4-dioxane at 100 degrees C proceeded smoothly to give the corresponding lactam 4a in 92% yield.  相似文献   

12.
Lo CY  Lin CC  Cheng HM  Liu RS 《Organic letters》2006,8(14):3153-3156
[reaction: see text] PtCl(2) (5 mol %) catalyst effected cycloisomerization of cis-2,4-dien-1-al (1) to 3-cyclopentenone (3) efficiently in hot toluene. In the presence of p-TSA, this PtCl(2) catalysis gave 2-cyclopentenone (5) exclusively because of the secondary isomerization reaction. Although the 1-2 equilibrium state greatly favors aldehyde (1), PdCl(2)(PhCN)(2) (5 mol %) catalyzed cycloisomerization of aldehyde (1) to 4,6,7,8-tetrahydro-3H-isochromene (4) smoothly in hot toluene. A plausible mechanism is proposed on the basis of reaction observation and isotope-labeled experiment.  相似文献   

13.
The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.  相似文献   

14.
Han SY  Jeong IH 《Organic letters》2010,12(23):5518-5521
2,2-Difluoro-1-tributylstannylethenyl p-toluenesulfonate (2) was reacted with aryl iodides in the presence of 10 mol % of Pd(PPh(3))(4) and 10 mol % of CuI in DMF at 80 °C for 10-20 h to give the cross-coupled products 3 in 35-97% yields. Further coupling reaction of 3 with arylstannanes in the presence of 5 mol % of Pd(PPh(3))(4) and 3 equiv of LiBr in DMF at 100 °C for 2-24 h afforded the desired products 5 in 25-78% yields.  相似文献   

15.
[reaction: see text] One-pot allene synthesis from aryl iodides 1 and propargyldicyclohexylamine 2 proceeded in the presence of Pd(2)(dba)(3).CHCl(3) catalyst (2.5 mol %), 1,2-bis(diphenylphosphino)carborane 5 (10 mol %), CuI (15 mol %), and Et(3)N (150 mol %) to give the corresponding allenes 4 in good to high yields. Electron-deficient bidentate phosphines, such as 1,2-bis(diphenylphosphino)carborane 5 and (C(6)F(5))(2)PC(2)H(4)P(C(6)F(5))(2), play the role of a dual mode ligand for both the Sonogashira coupling and hydride-transfer reactions.  相似文献   

16.
Yang CF  Shen C  Wang JY  Tian SK 《Organic letters》2012,14(12):3092-3095
A range of protected γ-oxo-α-amino esters have been prepared in a highly regio- and stereoselective manner through the decarboxylative Mannich reaction of β-keto acids with optically active N-tert-butanesulfinyl α-imino esters in the presence of 3 mol % La(OTf)(3) or 5 mol % Y(OTf)(3) at 20 °C. Preliminary mechanistic studies indicate that the reaction proceeds through imine addition followed by decarboxylation.  相似文献   

17.
3-allyl-N-(alkoxycarbonyl)indoles are synthesized via the reaction of 2-(alkynyl)phenylisocyanates and allyl carbonates in the presence of Pd(PPh(3))(4) (1 mol %) and CuCl (4 mol %) bimetallic catalyst. It is most probable that Pd(0) acts as a catalyst for the formation of a pi-allylpalladium alkoxide intermediate and Cu(I) behaves as a Lewis acid to activate the isocyanate, and the cyclization step proceeds with a cooperative catalytic activity of Pd and Cu. On the other hand, N-(alkoxycarbonyl)indoles are produced via the reaction of 2-(alkynyl)phenylisocyanates and alcohols under a catalytic amount of Na(2)PdCl(4) (5 mol %) or PtCl(2) (5 mol %). Pd(II) or Pt(II) catalyst exhibits dual roles; it acts as a Lewis acid to accelerate the addition of alcohols to isocyanates and as a typical transition-metal catalyst to activate the alkyne for the subsequent cyclization.  相似文献   

18.
Kim H  Lee C 《Organic letters》2002,4(24):4369-4371
[reaction: see text] A highly chemo- and stereoselective palladium-catalyzed allylic etherification reaction is described. The use of zinc(II) alkoxides proved effective in promoting the addition of the oxygen nucleophile derived from aliphatic alcohols to eta(3)-allylpalladium complexes. Using diethylzinc (0.5 equiv), 5 mol % of Pd(OAc)(2), and 7.5 mol % of 2-di(tert-butyl)phosphinobiphenyl in THF, the cross-coupling reaction between various aliphatic alcohols and allylic acetates proceeded at ambient temperature to furnish allylic ethers with high stereoselectivity.  相似文献   

19.
The Lawesson reagent and P(2)S(5) mediated reductive coupling of phenalenone (6) gives LPAH peropyrene (5) in 47% and 54% yields. The mechanism of the reaction involves the formation of phenalenethione (10), Z- and E-1,1'-biphenalenylidene (3), and 9 as intermediates. The electrocyclization reaction of Z-3 to 9, followed by aromatization, gives 5. The results of an ab initio and DFT study of 3 and 2,2'-biphenalenylidene (12) are reported. E-3 and Z-3 have a diradical character with twist angles of 44.8 degrees and 57.8 degrees (at UB3LYP/6-311G**). Delta E(++)(Tot) = 10.2 kJ/mol and Delta G(++)(298) = 10.6 kJ/mol for E-3 <==> Z-3 diastereomerization. These unusually low energy barriers are due to the ground-state diradical destabilization and the aromatic stabilization of the transition state TS-3. Triplet Z-3 is higher in energy than singlets E-3 and Z-3 by 10.4 and 3.1 kJ/mol. In the concealed non-Kekulé 12, singlet 12 is more stable than the triplet by 1.3 kJ/mol. Singlet 12 is more stable than singlet E-3 by 2.0 kJ/mol, and orthogonal singlet TS-12 is lower in energy than singlet TS-3 by 6.0 kJ/mol. The energy barriers for the hexatriene-cyclohexadiene electrocyclization Z-3 --> 9 are Delta E(++)(Tot) = 94.8 and Delta G(++)(298) = 98.3 kJ/mol (at (U)B3LYP/6-31G). The reaction occurs thermally in a conrotatory mode.  相似文献   

20.
Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号